Self-Supervised Seismic Random Noise Suppression With Higher-Quality Training Data Based on Similarity Differences

Suppressing random noise and improving the signal-to-noise ratio of seismic data holds immense significance for subsequent high-precision processing. As one of the most widely used denoising methods, self-learning-based algorithms typically partition the large zone into several smaller zones for ind...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.93889-93898
Hauptverfasser: Gao, Jian, Li, Zhenchun, Zhang, Min, Gao, Wanyue, Gao, Yixuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!