Self-Supervised Seismic Random Noise Suppression With Higher-Quality Training Data Based on Similarity Differences
Suppressing random noise and improving the signal-to-noise ratio of seismic data holds immense significance for subsequent high-precision processing. As one of the most widely used denoising methods, self-learning-based algorithms typically partition the large zone into several smaller zones for ind...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.93889-93898 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!