Mixed Attention Network for Source-Free Domain Adaptation in Bearing Fault Diagnosis

Polytropic working conditions are prioritized by most intelligent adaptive methods. But the privacy and the inaccessibility of the source data during the transfer learning process are not considered. Moreover, the attention weights for each time point and neural network channel in the fault signals...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.93771-93780
Hauptverfasser: Liu, Yijiao, Yuan, Qiufan, Sun, Kang, Huo, Mingying, Qi, Naiming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 93780
container_issue
container_start_page 93771
container_title IEEE access
container_volume 12
creator Liu, Yijiao
Yuan, Qiufan
Sun, Kang
Huo, Mingying
Qi, Naiming
description Polytropic working conditions are prioritized by most intelligent adaptive methods. But the privacy and the inaccessibility of the source data during the transfer learning process are not considered. Moreover, the attention weights for each time point and neural network channel in the fault signals are also not addressed. Intending to deal with the problems above, we put forward a mixed attention network for source-free domain adaptation in bearing fault diagnosis work. We fully utilize the only-once source fault information to generate a source model with strong anomaly detection capabilities by our mixed attention network. Mixed attention network achieved an average accuracy of over 93% in both two datasets and achieved the highest accuracy in all tasks of the ablation experiment.
doi_str_mv 10.1109/ACCESS.2024.3424476
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_3079408208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10587232</ieee_id><doaj_id>oai_doaj_org_article_2528bcedc8ca450aa56451a492ac8181</doaj_id><sourcerecordid>3079408208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-abb25676f0815bb666e1999fd29e22567325a518a8a2dbb4f974d3fe488902fa3</originalsourceid><addsrcrecordid>eNpNUU1PGzEQXVVUAlF-ARxW4rypPf5Y-xgCoZFoewicrdnd2chpWAevI9p_j8Oiirl45vm957FeUVxyNuOc2e_zxeJuvZ4BAzkTEqSs9ZfiDLi2lVBCn3zqT4uLcdyyXCZDqj4rHn_6v9SV85RoSD4M5S9KryH-KfsQy3U4xJaqZSQqb8Mz-qGcd7hP-M7M0w1h9MOmXOJhl8pbj5shjH78VnztcTfSxcd5Xjwt7x4XP6qH3_erxfyhasHYVGHTgNK17vM2qmm01sSttX0HluB4I0Ch4gYNQtc0sre17ERP0hjLoEdxXqwm3y7g1u2jf8b4zwX07h0IceMwJt_uyIEC07TUtaZFqRii0lJxlBawNdzw7HU9ee1jeDnQmNw2_37I6zvBaiuZAWYyS0ysNoZxjNT_f5Uzd0zDTWm4YxruI42suppUnog-KZSpQYB4A1oDhKY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3079408208</pqid></control><display><type>article</type><title>Mixed Attention Network for Source-Free Domain Adaptation in Bearing Fault Diagnosis</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Liu, Yijiao ; Yuan, Qiufan ; Sun, Kang ; Huo, Mingying ; Qi, Naiming</creator><creatorcontrib>Liu, Yijiao ; Yuan, Qiufan ; Sun, Kang ; Huo, Mingying ; Qi, Naiming</creatorcontrib><description>Polytropic working conditions are prioritized by most intelligent adaptive methods. But the privacy and the inaccessibility of the source data during the transfer learning process are not considered. Moreover, the attention weights for each time point and neural network channel in the fault signals are also not addressed. Intending to deal with the problems above, we put forward a mixed attention network for source-free domain adaptation in bearing fault diagnosis work. We fully utilize the only-once source fault information to generate a source model with strong anomaly detection capabilities by our mixed attention network. Mixed attention network achieved an average accuracy of over 93% in both two datasets and achieved the highest accuracy in all tasks of the ablation experiment.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3424476</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Ablation ; Adaptation ; Anomalies ; Convolutional neural network ; Convolutional neural networks ; Deep learning ; Fault detection ; Fault diagnosis ; Feature extraction ; Kernel ; Knowledge transfer ; multi-layer neural network ; Neural networks ; Prognostics and health management ; Task analysis ; time-domain analysis ; Transfer learning ; unsupervised learning</subject><ispartof>IEEE access, 2024, Vol.12, p.93771-93780</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4279-1923 ; 0000-0003-0401-5616 ; 0000-0001-9105-6197 ; 0000-0002-7887-3181</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10587232$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Liu, Yijiao</creatorcontrib><creatorcontrib>Yuan, Qiufan</creatorcontrib><creatorcontrib>Sun, Kang</creatorcontrib><creatorcontrib>Huo, Mingying</creatorcontrib><creatorcontrib>Qi, Naiming</creatorcontrib><title>Mixed Attention Network for Source-Free Domain Adaptation in Bearing Fault Diagnosis</title><title>IEEE access</title><addtitle>Access</addtitle><description>Polytropic working conditions are prioritized by most intelligent adaptive methods. But the privacy and the inaccessibility of the source data during the transfer learning process are not considered. Moreover, the attention weights for each time point and neural network channel in the fault signals are also not addressed. Intending to deal with the problems above, we put forward a mixed attention network for source-free domain adaptation in bearing fault diagnosis work. We fully utilize the only-once source fault information to generate a source model with strong anomaly detection capabilities by our mixed attention network. Mixed attention network achieved an average accuracy of over 93% in both two datasets and achieved the highest accuracy in all tasks of the ablation experiment.</description><subject>Ablation</subject><subject>Adaptation</subject><subject>Anomalies</subject><subject>Convolutional neural network</subject><subject>Convolutional neural networks</subject><subject>Deep learning</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>Feature extraction</subject><subject>Kernel</subject><subject>Knowledge transfer</subject><subject>multi-layer neural network</subject><subject>Neural networks</subject><subject>Prognostics and health management</subject><subject>Task analysis</subject><subject>time-domain analysis</subject><subject>Transfer learning</subject><subject>unsupervised learning</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PGzEQXVVUAlF-ARxW4rypPf5Y-xgCoZFoewicrdnd2chpWAevI9p_j8Oiirl45vm957FeUVxyNuOc2e_zxeJuvZ4BAzkTEqSs9ZfiDLi2lVBCn3zqT4uLcdyyXCZDqj4rHn_6v9SV85RoSD4M5S9KryH-KfsQy3U4xJaqZSQqb8Mz-qGcd7hP-M7M0w1h9MOmXOJhl8pbj5shjH78VnztcTfSxcd5Xjwt7x4XP6qH3_erxfyhasHYVGHTgNK17vM2qmm01sSttX0HluB4I0Ch4gYNQtc0sre17ERP0hjLoEdxXqwm3y7g1u2jf8b4zwX07h0IceMwJt_uyIEC07TUtaZFqRii0lJxlBawNdzw7HU9ee1jeDnQmNw2_37I6zvBaiuZAWYyS0ysNoZxjNT_f5Uzd0zDTWm4YxruI42suppUnog-KZSpQYB4A1oDhKY</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Liu, Yijiao</creator><creator>Yuan, Qiufan</creator><creator>Sun, Kang</creator><creator>Huo, Mingying</creator><creator>Qi, Naiming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4279-1923</orcidid><orcidid>https://orcid.org/0000-0003-0401-5616</orcidid><orcidid>https://orcid.org/0000-0001-9105-6197</orcidid><orcidid>https://orcid.org/0000-0002-7887-3181</orcidid></search><sort><creationdate>2024</creationdate><title>Mixed Attention Network for Source-Free Domain Adaptation in Bearing Fault Diagnosis</title><author>Liu, Yijiao ; Yuan, Qiufan ; Sun, Kang ; Huo, Mingying ; Qi, Naiming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-abb25676f0815bb666e1999fd29e22567325a518a8a2dbb4f974d3fe488902fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ablation</topic><topic>Adaptation</topic><topic>Anomalies</topic><topic>Convolutional neural network</topic><topic>Convolutional neural networks</topic><topic>Deep learning</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>Feature extraction</topic><topic>Kernel</topic><topic>Knowledge transfer</topic><topic>multi-layer neural network</topic><topic>Neural networks</topic><topic>Prognostics and health management</topic><topic>Task analysis</topic><topic>time-domain analysis</topic><topic>Transfer learning</topic><topic>unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yijiao</creatorcontrib><creatorcontrib>Yuan, Qiufan</creatorcontrib><creatorcontrib>Sun, Kang</creatorcontrib><creatorcontrib>Huo, Mingying</creatorcontrib><creatorcontrib>Qi, Naiming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yijiao</au><au>Yuan, Qiufan</au><au>Sun, Kang</au><au>Huo, Mingying</au><au>Qi, Naiming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mixed Attention Network for Source-Free Domain Adaptation in Bearing Fault Diagnosis</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>93771</spage><epage>93780</epage><pages>93771-93780</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Polytropic working conditions are prioritized by most intelligent adaptive methods. But the privacy and the inaccessibility of the source data during the transfer learning process are not considered. Moreover, the attention weights for each time point and neural network channel in the fault signals are also not addressed. Intending to deal with the problems above, we put forward a mixed attention network for source-free domain adaptation in bearing fault diagnosis work. We fully utilize the only-once source fault information to generate a source model with strong anomaly detection capabilities by our mixed attention network. Mixed attention network achieved an average accuracy of over 93% in both two datasets and achieved the highest accuracy in all tasks of the ablation experiment.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3424476</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4279-1923</orcidid><orcidid>https://orcid.org/0000-0003-0401-5616</orcidid><orcidid>https://orcid.org/0000-0001-9105-6197</orcidid><orcidid>https://orcid.org/0000-0002-7887-3181</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.93771-93780
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_3079408208
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Ablation
Adaptation
Anomalies
Convolutional neural network
Convolutional neural networks
Deep learning
Fault detection
Fault diagnosis
Feature extraction
Kernel
Knowledge transfer
multi-layer neural network
Neural networks
Prognostics and health management
Task analysis
time-domain analysis
Transfer learning
unsupervised learning
title Mixed Attention Network for Source-Free Domain Adaptation in Bearing Fault Diagnosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A28%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mixed%20Attention%20Network%20for%20Source-Free%20Domain%20Adaptation%20in%20Bearing%20Fault%20Diagnosis&rft.jtitle=IEEE%20access&rft.au=Liu,%20Yijiao&rft.date=2024&rft.volume=12&rft.spage=93771&rft.epage=93780&rft.pages=93771-93780&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3424476&rft_dat=%3Cproquest_ieee_%3E3079408208%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3079408208&rft_id=info:pmid/&rft_ieee_id=10587232&rft_doaj_id=oai_doaj_org_article_2528bcedc8ca450aa56451a492ac8181&rfr_iscdi=true