Mixed Attention Network for Source-Free Domain Adaptation in Bearing Fault Diagnosis
Polytropic working conditions are prioritized by most intelligent adaptive methods. But the privacy and the inaccessibility of the source data during the transfer learning process are not considered. Moreover, the attention weights for each time point and neural network channel in the fault signals...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.93771-93780 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 93780 |
---|---|
container_issue | |
container_start_page | 93771 |
container_title | IEEE access |
container_volume | 12 |
creator | Liu, Yijiao Yuan, Qiufan Sun, Kang Huo, Mingying Qi, Naiming |
description | Polytropic working conditions are prioritized by most intelligent adaptive methods. But the privacy and the inaccessibility of the source data during the transfer learning process are not considered. Moreover, the attention weights for each time point and neural network channel in the fault signals are also not addressed. Intending to deal with the problems above, we put forward a mixed attention network for source-free domain adaptation in bearing fault diagnosis work. We fully utilize the only-once source fault information to generate a source model with strong anomaly detection capabilities by our mixed attention network. Mixed attention network achieved an average accuracy of over 93% in both two datasets and achieved the highest accuracy in all tasks of the ablation experiment. |
doi_str_mv | 10.1109/ACCESS.2024.3424476 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_3079408208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10587232</ieee_id><doaj_id>oai_doaj_org_article_2528bcedc8ca450aa56451a492ac8181</doaj_id><sourcerecordid>3079408208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-abb25676f0815bb666e1999fd29e22567325a518a8a2dbb4f974d3fe488902fa3</originalsourceid><addsrcrecordid>eNpNUU1PGzEQXVVUAlF-ARxW4rypPf5Y-xgCoZFoewicrdnd2chpWAevI9p_j8Oiirl45vm957FeUVxyNuOc2e_zxeJuvZ4BAzkTEqSs9ZfiDLi2lVBCn3zqT4uLcdyyXCZDqj4rHn_6v9SV85RoSD4M5S9KryH-KfsQy3U4xJaqZSQqb8Mz-qGcd7hP-M7M0w1h9MOmXOJhl8pbj5shjH78VnztcTfSxcd5Xjwt7x4XP6qH3_erxfyhasHYVGHTgNK17vM2qmm01sSttX0HluB4I0Ch4gYNQtc0sre17ERP0hjLoEdxXqwm3y7g1u2jf8b4zwX07h0IceMwJt_uyIEC07TUtaZFqRii0lJxlBawNdzw7HU9ee1jeDnQmNw2_37I6zvBaiuZAWYyS0ysNoZxjNT_f5Uzd0zDTWm4YxruI42suppUnog-KZSpQYB4A1oDhKY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3079408208</pqid></control><display><type>article</type><title>Mixed Attention Network for Source-Free Domain Adaptation in Bearing Fault Diagnosis</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Liu, Yijiao ; Yuan, Qiufan ; Sun, Kang ; Huo, Mingying ; Qi, Naiming</creator><creatorcontrib>Liu, Yijiao ; Yuan, Qiufan ; Sun, Kang ; Huo, Mingying ; Qi, Naiming</creatorcontrib><description>Polytropic working conditions are prioritized by most intelligent adaptive methods. But the privacy and the inaccessibility of the source data during the transfer learning process are not considered. Moreover, the attention weights for each time point and neural network channel in the fault signals are also not addressed. Intending to deal with the problems above, we put forward a mixed attention network for source-free domain adaptation in bearing fault diagnosis work. We fully utilize the only-once source fault information to generate a source model with strong anomaly detection capabilities by our mixed attention network. Mixed attention network achieved an average accuracy of over 93% in both two datasets and achieved the highest accuracy in all tasks of the ablation experiment.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3424476</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Ablation ; Adaptation ; Anomalies ; Convolutional neural network ; Convolutional neural networks ; Deep learning ; Fault detection ; Fault diagnosis ; Feature extraction ; Kernel ; Knowledge transfer ; multi-layer neural network ; Neural networks ; Prognostics and health management ; Task analysis ; time-domain analysis ; Transfer learning ; unsupervised learning</subject><ispartof>IEEE access, 2024, Vol.12, p.93771-93780</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4279-1923 ; 0000-0003-0401-5616 ; 0000-0001-9105-6197 ; 0000-0002-7887-3181</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10587232$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Liu, Yijiao</creatorcontrib><creatorcontrib>Yuan, Qiufan</creatorcontrib><creatorcontrib>Sun, Kang</creatorcontrib><creatorcontrib>Huo, Mingying</creatorcontrib><creatorcontrib>Qi, Naiming</creatorcontrib><title>Mixed Attention Network for Source-Free Domain Adaptation in Bearing Fault Diagnosis</title><title>IEEE access</title><addtitle>Access</addtitle><description>Polytropic working conditions are prioritized by most intelligent adaptive methods. But the privacy and the inaccessibility of the source data during the transfer learning process are not considered. Moreover, the attention weights for each time point and neural network channel in the fault signals are also not addressed. Intending to deal with the problems above, we put forward a mixed attention network for source-free domain adaptation in bearing fault diagnosis work. We fully utilize the only-once source fault information to generate a source model with strong anomaly detection capabilities by our mixed attention network. Mixed attention network achieved an average accuracy of over 93% in both two datasets and achieved the highest accuracy in all tasks of the ablation experiment.</description><subject>Ablation</subject><subject>Adaptation</subject><subject>Anomalies</subject><subject>Convolutional neural network</subject><subject>Convolutional neural networks</subject><subject>Deep learning</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>Feature extraction</subject><subject>Kernel</subject><subject>Knowledge transfer</subject><subject>multi-layer neural network</subject><subject>Neural networks</subject><subject>Prognostics and health management</subject><subject>Task analysis</subject><subject>time-domain analysis</subject><subject>Transfer learning</subject><subject>unsupervised learning</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PGzEQXVVUAlF-ARxW4rypPf5Y-xgCoZFoewicrdnd2chpWAevI9p_j8Oiirl45vm957FeUVxyNuOc2e_zxeJuvZ4BAzkTEqSs9ZfiDLi2lVBCn3zqT4uLcdyyXCZDqj4rHn_6v9SV85RoSD4M5S9KryH-KfsQy3U4xJaqZSQqb8Mz-qGcd7hP-M7M0w1h9MOmXOJhl8pbj5shjH78VnztcTfSxcd5Xjwt7x4XP6qH3_erxfyhasHYVGHTgNK17vM2qmm01sSttX0HluB4I0Ch4gYNQtc0sre17ERP0hjLoEdxXqwm3y7g1u2jf8b4zwX07h0IceMwJt_uyIEC07TUtaZFqRii0lJxlBawNdzw7HU9ee1jeDnQmNw2_37I6zvBaiuZAWYyS0ysNoZxjNT_f5Uzd0zDTWm4YxruI42suppUnog-KZSpQYB4A1oDhKY</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Liu, Yijiao</creator><creator>Yuan, Qiufan</creator><creator>Sun, Kang</creator><creator>Huo, Mingying</creator><creator>Qi, Naiming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4279-1923</orcidid><orcidid>https://orcid.org/0000-0003-0401-5616</orcidid><orcidid>https://orcid.org/0000-0001-9105-6197</orcidid><orcidid>https://orcid.org/0000-0002-7887-3181</orcidid></search><sort><creationdate>2024</creationdate><title>Mixed Attention Network for Source-Free Domain Adaptation in Bearing Fault Diagnosis</title><author>Liu, Yijiao ; Yuan, Qiufan ; Sun, Kang ; Huo, Mingying ; Qi, Naiming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-abb25676f0815bb666e1999fd29e22567325a518a8a2dbb4f974d3fe488902fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ablation</topic><topic>Adaptation</topic><topic>Anomalies</topic><topic>Convolutional neural network</topic><topic>Convolutional neural networks</topic><topic>Deep learning</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>Feature extraction</topic><topic>Kernel</topic><topic>Knowledge transfer</topic><topic>multi-layer neural network</topic><topic>Neural networks</topic><topic>Prognostics and health management</topic><topic>Task analysis</topic><topic>time-domain analysis</topic><topic>Transfer learning</topic><topic>unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yijiao</creatorcontrib><creatorcontrib>Yuan, Qiufan</creatorcontrib><creatorcontrib>Sun, Kang</creatorcontrib><creatorcontrib>Huo, Mingying</creatorcontrib><creatorcontrib>Qi, Naiming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yijiao</au><au>Yuan, Qiufan</au><au>Sun, Kang</au><au>Huo, Mingying</au><au>Qi, Naiming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mixed Attention Network for Source-Free Domain Adaptation in Bearing Fault Diagnosis</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>93771</spage><epage>93780</epage><pages>93771-93780</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Polytropic working conditions are prioritized by most intelligent adaptive methods. But the privacy and the inaccessibility of the source data during the transfer learning process are not considered. Moreover, the attention weights for each time point and neural network channel in the fault signals are also not addressed. Intending to deal with the problems above, we put forward a mixed attention network for source-free domain adaptation in bearing fault diagnosis work. We fully utilize the only-once source fault information to generate a source model with strong anomaly detection capabilities by our mixed attention network. Mixed attention network achieved an average accuracy of over 93% in both two datasets and achieved the highest accuracy in all tasks of the ablation experiment.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3424476</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4279-1923</orcidid><orcidid>https://orcid.org/0000-0003-0401-5616</orcidid><orcidid>https://orcid.org/0000-0001-9105-6197</orcidid><orcidid>https://orcid.org/0000-0002-7887-3181</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.93771-93780 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_3079408208 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Ablation Adaptation Anomalies Convolutional neural network Convolutional neural networks Deep learning Fault detection Fault diagnosis Feature extraction Kernel Knowledge transfer multi-layer neural network Neural networks Prognostics and health management Task analysis time-domain analysis Transfer learning unsupervised learning |
title | Mixed Attention Network for Source-Free Domain Adaptation in Bearing Fault Diagnosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A28%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mixed%20Attention%20Network%20for%20Source-Free%20Domain%20Adaptation%20in%20Bearing%20Fault%20Diagnosis&rft.jtitle=IEEE%20access&rft.au=Liu,%20Yijiao&rft.date=2024&rft.volume=12&rft.spage=93771&rft.epage=93780&rft.pages=93771-93780&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3424476&rft_dat=%3Cproquest_ieee_%3E3079408208%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3079408208&rft_id=info:pmid/&rft_ieee_id=10587232&rft_doaj_id=oai_doaj_org_article_2528bcedc8ca450aa56451a492ac8181&rfr_iscdi=true |