Injecting Linguistic Knowledge Into BERT for Dialogue State Tracking
Dialogue State Tracking (DST) models often employ intricate neural network architectures, necessitating substantial training data, and their inference process lacks transparency. This paper proposes a method that extracts linguistic knowledge via an unsupervised framework and subsequently utilizes t...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.93761-93770 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 93770 |
---|---|
container_issue | |
container_start_page | 93761 |
container_title | IEEE access |
container_volume | 12 |
creator | Feng, Xiaohan Wu, Xixin Meng, Helen |
description | Dialogue State Tracking (DST) models often employ intricate neural network architectures, necessitating substantial training data, and their inference process lacks transparency. This paper proposes a method that extracts linguistic knowledge via an unsupervised framework and subsequently utilizes this knowledge to augment BERT's performance and interpretability in DST tasks. The knowledge extraction procedure is computationally economical and does not require annotations or additional training data. The injection of the extracted knowledge can be achieved by the addition of simple neural modules. We employ the Convex Polytopic Model (CPM) as a feature extraction tool for DST tasks and illustrate that the acquired features correlate with syntactic and semantic patterns in the dialogues. This correlation facilitates a comprehensive understanding of the linguistic features influencing the DST model's decision-making process. We benchmark this framework on various DST tasks and observe a notable improvement in accuracy. |
doi_str_mv | 10.1109/ACCESS.2024.3423452 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_3079408071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10584540</ieee_id><doaj_id>oai_doaj_org_article_db24aafed8a749aeb4ebaef73f81fdad</doaj_id><sourcerecordid>3079408071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-e89e73e1649f4b35cd3d070c84d3651de8685a62197947b1bea7785e46b75d773</originalsourceid><addsrcrecordid>eNpNUNFKwzAULaLgmPsCfSj43Jk0SZM8zm5qcSC4-RzS5ra01mamLeLfm9kh3od7L4d7zrmcILjGaIkxknerNN3sdssYxXRJaEwoi8-CWYwTGRFGkvN_-2Ww6PsG-RIeYnwWrLOugWKouyrc-jbW_VAX4XNnv1owFYRZN9jwfvO6D0vrwnWtW1uNEO4GPUC4d7p496yr4KLUbQ-L05wHbw-bffoUbV8es3S1jYpYyCECIYETwAmVJc0JKwwxiKNCUEMShg2IRDCdxFhySXmOc9CcCwY0yTkznJN5kE26xupGHVz9od23srpWv4B1ldLO_9-CMnlMtS7BCM2p1JBTyDWUnJQCl0Ybr3U7aR2c_RyhH1RjR9f59xVB3h8JxLG_ItNV4WzfOyj_XDFSx_TVlL46pq9O6XvWzcSqAeAfgwnKKCI_Mop_8A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3079408071</pqid></control><display><type>article</type><title>Injecting Linguistic Knowledge Into BERT for Dialogue State Tracking</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Feng, Xiaohan ; Wu, Xixin ; Meng, Helen</creator><creatorcontrib>Feng, Xiaohan ; Wu, Xixin ; Meng, Helen</creatorcontrib><description>Dialogue State Tracking (DST) models often employ intricate neural network architectures, necessitating substantial training data, and their inference process lacks transparency. This paper proposes a method that extracts linguistic knowledge via an unsupervised framework and subsequently utilizes this knowledge to augment BERT's performance and interpretability in DST tasks. The knowledge extraction procedure is computationally economical and does not require annotations or additional training data. The injection of the extracted knowledge can be achieved by the addition of simple neural modules. We employ the Convex Polytopic Model (CPM) as a feature extraction tool for DST tasks and illustrate that the acquired features correlate with syntactic and semantic patterns in the dialogues. This correlation facilitates a comprehensive understanding of the linguistic features influencing the DST model's decision-making process. We benchmark this framework on various DST tasks and observe a notable improvement in accuracy.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3423452</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Annotations ; Artificial intelligence ; Biological system modeling ; Computational modeling ; convex polytopic model ; Dialogue ; Dialogue state tracking ; Encoding ; Extraction procedures ; Feature extraction ; Inference ; interpretable AI ; Knowledge ; knowledge extraction ; Linguistics ; Neural networks ; Semantics ; Syntactic structures ; Syntax ; Task analysis ; Tracking ; Training</subject><ispartof>IEEE access, 2024, Vol.12, p.93761-93770</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-e89e73e1649f4b35cd3d070c84d3651de8685a62197947b1bea7785e46b75d773</cites><orcidid>0000-0002-4427-3532 ; 0000-0001-9543-1572 ; 0000-0001-7115-2034</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10584540$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,4025,27638,27928,27929,27930,54938</link.rule.ids></links><search><creatorcontrib>Feng, Xiaohan</creatorcontrib><creatorcontrib>Wu, Xixin</creatorcontrib><creatorcontrib>Meng, Helen</creatorcontrib><title>Injecting Linguistic Knowledge Into BERT for Dialogue State Tracking</title><title>IEEE access</title><addtitle>Access</addtitle><description>Dialogue State Tracking (DST) models often employ intricate neural network architectures, necessitating substantial training data, and their inference process lacks transparency. This paper proposes a method that extracts linguistic knowledge via an unsupervised framework and subsequently utilizes this knowledge to augment BERT's performance and interpretability in DST tasks. The knowledge extraction procedure is computationally economical and does not require annotations or additional training data. The injection of the extracted knowledge can be achieved by the addition of simple neural modules. We employ the Convex Polytopic Model (CPM) as a feature extraction tool for DST tasks and illustrate that the acquired features correlate with syntactic and semantic patterns in the dialogues. This correlation facilitates a comprehensive understanding of the linguistic features influencing the DST model's decision-making process. We benchmark this framework on various DST tasks and observe a notable improvement in accuracy.</description><subject>Annotations</subject><subject>Artificial intelligence</subject><subject>Biological system modeling</subject><subject>Computational modeling</subject><subject>convex polytopic model</subject><subject>Dialogue</subject><subject>Dialogue state tracking</subject><subject>Encoding</subject><subject>Extraction procedures</subject><subject>Feature extraction</subject><subject>Inference</subject><subject>interpretable AI</subject><subject>Knowledge</subject><subject>knowledge extraction</subject><subject>Linguistics</subject><subject>Neural networks</subject><subject>Semantics</subject><subject>Syntactic structures</subject><subject>Syntax</subject><subject>Task analysis</subject><subject>Tracking</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUNFKwzAULaLgmPsCfSj43Jk0SZM8zm5qcSC4-RzS5ra01mamLeLfm9kh3od7L4d7zrmcILjGaIkxknerNN3sdssYxXRJaEwoi8-CWYwTGRFGkvN_-2Ww6PsG-RIeYnwWrLOugWKouyrc-jbW_VAX4XNnv1owFYRZN9jwfvO6D0vrwnWtW1uNEO4GPUC4d7p496yr4KLUbQ-L05wHbw-bffoUbV8es3S1jYpYyCECIYETwAmVJc0JKwwxiKNCUEMShg2IRDCdxFhySXmOc9CcCwY0yTkznJN5kE26xupGHVz9od23srpWv4B1ldLO_9-CMnlMtS7BCM2p1JBTyDWUnJQCl0Ybr3U7aR2c_RyhH1RjR9f59xVB3h8JxLG_ItNV4WzfOyj_XDFSx_TVlL46pq9O6XvWzcSqAeAfgwnKKCI_Mop_8A</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Feng, Xiaohan</creator><creator>Wu, Xixin</creator><creator>Meng, Helen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7T9</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4427-3532</orcidid><orcidid>https://orcid.org/0000-0001-9543-1572</orcidid><orcidid>https://orcid.org/0000-0001-7115-2034</orcidid></search><sort><creationdate>2024</creationdate><title>Injecting Linguistic Knowledge Into BERT for Dialogue State Tracking</title><author>Feng, Xiaohan ; Wu, Xixin ; Meng, Helen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-e89e73e1649f4b35cd3d070c84d3651de8685a62197947b1bea7785e46b75d773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Annotations</topic><topic>Artificial intelligence</topic><topic>Biological system modeling</topic><topic>Computational modeling</topic><topic>convex polytopic model</topic><topic>Dialogue</topic><topic>Dialogue state tracking</topic><topic>Encoding</topic><topic>Extraction procedures</topic><topic>Feature extraction</topic><topic>Inference</topic><topic>interpretable AI</topic><topic>Knowledge</topic><topic>knowledge extraction</topic><topic>Linguistics</topic><topic>Neural networks</topic><topic>Semantics</topic><topic>Syntactic structures</topic><topic>Syntax</topic><topic>Task analysis</topic><topic>Tracking</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Xiaohan</creatorcontrib><creatorcontrib>Wu, Xixin</creatorcontrib><creatorcontrib>Meng, Helen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Linguistics and Language Behavior Abstracts (LLBA)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Xiaohan</au><au>Wu, Xixin</au><au>Meng, Helen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Injecting Linguistic Knowledge Into BERT for Dialogue State Tracking</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>93761</spage><epage>93770</epage><pages>93761-93770</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Dialogue State Tracking (DST) models often employ intricate neural network architectures, necessitating substantial training data, and their inference process lacks transparency. This paper proposes a method that extracts linguistic knowledge via an unsupervised framework and subsequently utilizes this knowledge to augment BERT's performance and interpretability in DST tasks. The knowledge extraction procedure is computationally economical and does not require annotations or additional training data. The injection of the extracted knowledge can be achieved by the addition of simple neural modules. We employ the Convex Polytopic Model (CPM) as a feature extraction tool for DST tasks and illustrate that the acquired features correlate with syntactic and semantic patterns in the dialogues. This correlation facilitates a comprehensive understanding of the linguistic features influencing the DST model's decision-making process. We benchmark this framework on various DST tasks and observe a notable improvement in accuracy.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3423452</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4427-3532</orcidid><orcidid>https://orcid.org/0000-0001-9543-1572</orcidid><orcidid>https://orcid.org/0000-0001-7115-2034</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.93761-93770 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_3079408071 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Annotations Artificial intelligence Biological system modeling Computational modeling convex polytopic model Dialogue Dialogue state tracking Encoding Extraction procedures Feature extraction Inference interpretable AI Knowledge knowledge extraction Linguistics Neural networks Semantics Syntactic structures Syntax Task analysis Tracking Training |
title | Injecting Linguistic Knowledge Into BERT for Dialogue State Tracking |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T03%3A34%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Injecting%20Linguistic%20Knowledge%20Into%20BERT%20for%20Dialogue%20State%20Tracking&rft.jtitle=IEEE%20access&rft.au=Feng,%20Xiaohan&rft.date=2024&rft.volume=12&rft.spage=93761&rft.epage=93770&rft.pages=93761-93770&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3423452&rft_dat=%3Cproquest_ieee_%3E3079408071%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3079408071&rft_id=info:pmid/&rft_ieee_id=10584540&rft_doaj_id=oai_doaj_org_article_db24aafed8a749aeb4ebaef73f81fdad&rfr_iscdi=true |