Injecting Linguistic Knowledge Into BERT for Dialogue State Tracking

Dialogue State Tracking (DST) models often employ intricate neural network architectures, necessitating substantial training data, and their inference process lacks transparency. This paper proposes a method that extracts linguistic knowledge via an unsupervised framework and subsequently utilizes t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.93761-93770
Hauptverfasser: Feng, Xiaohan, Wu, Xixin, Meng, Helen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 93770
container_issue
container_start_page 93761
container_title IEEE access
container_volume 12
creator Feng, Xiaohan
Wu, Xixin
Meng, Helen
description Dialogue State Tracking (DST) models often employ intricate neural network architectures, necessitating substantial training data, and their inference process lacks transparency. This paper proposes a method that extracts linguistic knowledge via an unsupervised framework and subsequently utilizes this knowledge to augment BERT's performance and interpretability in DST tasks. The knowledge extraction procedure is computationally economical and does not require annotations or additional training data. The injection of the extracted knowledge can be achieved by the addition of simple neural modules. We employ the Convex Polytopic Model (CPM) as a feature extraction tool for DST tasks and illustrate that the acquired features correlate with syntactic and semantic patterns in the dialogues. This correlation facilitates a comprehensive understanding of the linguistic features influencing the DST model's decision-making process. We benchmark this framework on various DST tasks and observe a notable improvement in accuracy.
doi_str_mv 10.1109/ACCESS.2024.3423452
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_3079408071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10584540</ieee_id><doaj_id>oai_doaj_org_article_db24aafed8a749aeb4ebaef73f81fdad</doaj_id><sourcerecordid>3079408071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-e89e73e1649f4b35cd3d070c84d3651de8685a62197947b1bea7785e46b75d773</originalsourceid><addsrcrecordid>eNpNUNFKwzAULaLgmPsCfSj43Jk0SZM8zm5qcSC4-RzS5ra01mamLeLfm9kh3od7L4d7zrmcILjGaIkxknerNN3sdssYxXRJaEwoi8-CWYwTGRFGkvN_-2Ww6PsG-RIeYnwWrLOugWKouyrc-jbW_VAX4XNnv1owFYRZN9jwfvO6D0vrwnWtW1uNEO4GPUC4d7p496yr4KLUbQ-L05wHbw-bffoUbV8es3S1jYpYyCECIYETwAmVJc0JKwwxiKNCUEMShg2IRDCdxFhySXmOc9CcCwY0yTkznJN5kE26xupGHVz9od23srpWv4B1ldLO_9-CMnlMtS7BCM2p1JBTyDWUnJQCl0Ybr3U7aR2c_RyhH1RjR9f59xVB3h8JxLG_ItNV4WzfOyj_XDFSx_TVlL46pq9O6XvWzcSqAeAfgwnKKCI_Mop_8A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3079408071</pqid></control><display><type>article</type><title>Injecting Linguistic Knowledge Into BERT for Dialogue State Tracking</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Feng, Xiaohan ; Wu, Xixin ; Meng, Helen</creator><creatorcontrib>Feng, Xiaohan ; Wu, Xixin ; Meng, Helen</creatorcontrib><description>Dialogue State Tracking (DST) models often employ intricate neural network architectures, necessitating substantial training data, and their inference process lacks transparency. This paper proposes a method that extracts linguistic knowledge via an unsupervised framework and subsequently utilizes this knowledge to augment BERT's performance and interpretability in DST tasks. The knowledge extraction procedure is computationally economical and does not require annotations or additional training data. The injection of the extracted knowledge can be achieved by the addition of simple neural modules. We employ the Convex Polytopic Model (CPM) as a feature extraction tool for DST tasks and illustrate that the acquired features correlate with syntactic and semantic patterns in the dialogues. This correlation facilitates a comprehensive understanding of the linguistic features influencing the DST model's decision-making process. We benchmark this framework on various DST tasks and observe a notable improvement in accuracy.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3423452</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Annotations ; Artificial intelligence ; Biological system modeling ; Computational modeling ; convex polytopic model ; Dialogue ; Dialogue state tracking ; Encoding ; Extraction procedures ; Feature extraction ; Inference ; interpretable AI ; Knowledge ; knowledge extraction ; Linguistics ; Neural networks ; Semantics ; Syntactic structures ; Syntax ; Task analysis ; Tracking ; Training</subject><ispartof>IEEE access, 2024, Vol.12, p.93761-93770</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-e89e73e1649f4b35cd3d070c84d3651de8685a62197947b1bea7785e46b75d773</cites><orcidid>0000-0002-4427-3532 ; 0000-0001-9543-1572 ; 0000-0001-7115-2034</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10584540$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,4025,27638,27928,27929,27930,54938</link.rule.ids></links><search><creatorcontrib>Feng, Xiaohan</creatorcontrib><creatorcontrib>Wu, Xixin</creatorcontrib><creatorcontrib>Meng, Helen</creatorcontrib><title>Injecting Linguistic Knowledge Into BERT for Dialogue State Tracking</title><title>IEEE access</title><addtitle>Access</addtitle><description>Dialogue State Tracking (DST) models often employ intricate neural network architectures, necessitating substantial training data, and their inference process lacks transparency. This paper proposes a method that extracts linguistic knowledge via an unsupervised framework and subsequently utilizes this knowledge to augment BERT's performance and interpretability in DST tasks. The knowledge extraction procedure is computationally economical and does not require annotations or additional training data. The injection of the extracted knowledge can be achieved by the addition of simple neural modules. We employ the Convex Polytopic Model (CPM) as a feature extraction tool for DST tasks and illustrate that the acquired features correlate with syntactic and semantic patterns in the dialogues. This correlation facilitates a comprehensive understanding of the linguistic features influencing the DST model's decision-making process. We benchmark this framework on various DST tasks and observe a notable improvement in accuracy.</description><subject>Annotations</subject><subject>Artificial intelligence</subject><subject>Biological system modeling</subject><subject>Computational modeling</subject><subject>convex polytopic model</subject><subject>Dialogue</subject><subject>Dialogue state tracking</subject><subject>Encoding</subject><subject>Extraction procedures</subject><subject>Feature extraction</subject><subject>Inference</subject><subject>interpretable AI</subject><subject>Knowledge</subject><subject>knowledge extraction</subject><subject>Linguistics</subject><subject>Neural networks</subject><subject>Semantics</subject><subject>Syntactic structures</subject><subject>Syntax</subject><subject>Task analysis</subject><subject>Tracking</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUNFKwzAULaLgmPsCfSj43Jk0SZM8zm5qcSC4-RzS5ra01mamLeLfm9kh3od7L4d7zrmcILjGaIkxknerNN3sdssYxXRJaEwoi8-CWYwTGRFGkvN_-2Ww6PsG-RIeYnwWrLOugWKouyrc-jbW_VAX4XNnv1owFYRZN9jwfvO6D0vrwnWtW1uNEO4GPUC4d7p496yr4KLUbQ-L05wHbw-bffoUbV8es3S1jYpYyCECIYETwAmVJc0JKwwxiKNCUEMShg2IRDCdxFhySXmOc9CcCwY0yTkznJN5kE26xupGHVz9od23srpWv4B1ldLO_9-CMnlMtS7BCM2p1JBTyDWUnJQCl0Ybr3U7aR2c_RyhH1RjR9f59xVB3h8JxLG_ItNV4WzfOyj_XDFSx_TVlL46pq9O6XvWzcSqAeAfgwnKKCI_Mop_8A</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Feng, Xiaohan</creator><creator>Wu, Xixin</creator><creator>Meng, Helen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7T9</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4427-3532</orcidid><orcidid>https://orcid.org/0000-0001-9543-1572</orcidid><orcidid>https://orcid.org/0000-0001-7115-2034</orcidid></search><sort><creationdate>2024</creationdate><title>Injecting Linguistic Knowledge Into BERT for Dialogue State Tracking</title><author>Feng, Xiaohan ; Wu, Xixin ; Meng, Helen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-e89e73e1649f4b35cd3d070c84d3651de8685a62197947b1bea7785e46b75d773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Annotations</topic><topic>Artificial intelligence</topic><topic>Biological system modeling</topic><topic>Computational modeling</topic><topic>convex polytopic model</topic><topic>Dialogue</topic><topic>Dialogue state tracking</topic><topic>Encoding</topic><topic>Extraction procedures</topic><topic>Feature extraction</topic><topic>Inference</topic><topic>interpretable AI</topic><topic>Knowledge</topic><topic>knowledge extraction</topic><topic>Linguistics</topic><topic>Neural networks</topic><topic>Semantics</topic><topic>Syntactic structures</topic><topic>Syntax</topic><topic>Task analysis</topic><topic>Tracking</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Xiaohan</creatorcontrib><creatorcontrib>Wu, Xixin</creatorcontrib><creatorcontrib>Meng, Helen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Linguistics and Language Behavior Abstracts (LLBA)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Xiaohan</au><au>Wu, Xixin</au><au>Meng, Helen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Injecting Linguistic Knowledge Into BERT for Dialogue State Tracking</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>93761</spage><epage>93770</epage><pages>93761-93770</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Dialogue State Tracking (DST) models often employ intricate neural network architectures, necessitating substantial training data, and their inference process lacks transparency. This paper proposes a method that extracts linguistic knowledge via an unsupervised framework and subsequently utilizes this knowledge to augment BERT's performance and interpretability in DST tasks. The knowledge extraction procedure is computationally economical and does not require annotations or additional training data. The injection of the extracted knowledge can be achieved by the addition of simple neural modules. We employ the Convex Polytopic Model (CPM) as a feature extraction tool for DST tasks and illustrate that the acquired features correlate with syntactic and semantic patterns in the dialogues. This correlation facilitates a comprehensive understanding of the linguistic features influencing the DST model's decision-making process. We benchmark this framework on various DST tasks and observe a notable improvement in accuracy.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3423452</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4427-3532</orcidid><orcidid>https://orcid.org/0000-0001-9543-1572</orcidid><orcidid>https://orcid.org/0000-0001-7115-2034</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.93761-93770
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_3079408071
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Annotations
Artificial intelligence
Biological system modeling
Computational modeling
convex polytopic model
Dialogue
Dialogue state tracking
Encoding
Extraction procedures
Feature extraction
Inference
interpretable AI
Knowledge
knowledge extraction
Linguistics
Neural networks
Semantics
Syntactic structures
Syntax
Task analysis
Tracking
Training
title Injecting Linguistic Knowledge Into BERT for Dialogue State Tracking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T03%3A34%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Injecting%20Linguistic%20Knowledge%20Into%20BERT%20for%20Dialogue%20State%20Tracking&rft.jtitle=IEEE%20access&rft.au=Feng,%20Xiaohan&rft.date=2024&rft.volume=12&rft.spage=93761&rft.epage=93770&rft.pages=93761-93770&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3423452&rft_dat=%3Cproquest_ieee_%3E3079408071%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3079408071&rft_id=info:pmid/&rft_ieee_id=10584540&rft_doaj_id=oai_doaj_org_article_db24aafed8a749aeb4ebaef73f81fdad&rfr_iscdi=true