Diagnosis of Osteoporosis by Bone X-Ray Based on Non-Destructive Compression

X-ray is a commonly used imaging method for the diagnosis and evaluation of osteoporosis, which has crucial clinical diagnostic significance. To ensure the high fidelity requirements of medical image diagnosis and achieve high-quality transmission and storage of image data, this study uses deep lear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.93946-93956
Hauptverfasser: Jiang, Chao, Cheng, Yuqi, Cheng, Baosheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 93956
container_issue
container_start_page 93946
container_title IEEE access
container_volume 12
creator Jiang, Chao
Cheng, Yuqi
Cheng, Baosheng
description X-ray is a commonly used imaging method for the diagnosis and evaluation of osteoporosis, which has crucial clinical diagnostic significance. To ensure the high fidelity requirements of medical image diagnosis and achieve high-quality transmission and storage of image data, this study uses deep learning to design a dual stream lossless compression network suitable for X-ray images. The results demonstrated that the designed network performed well in compression and bit rates on different datasets, with a minimum bit rate of 0.204 and a maximum compression rate of 0.946. Compared to other advanced models, this network had the highest peak signal-to-noise ratio and lower distortion of compressed images. In the compression process of X-ray images of osteoporosis, this network outperformed other models in different structural similarity indices, with values above 0.90, showing significant advantages. The equivalent number of views of the compressed image reached 0.93, and the visual quality of the lossless compressed image was high, ensuring the efficiency and accuracy of diagnosis. The research method can significantly improve the theoretical research level of lossless compression technology and enhance its practical value in remote medical diagnosis.
doi_str_mv 10.1109/ACCESS.2024.3421279
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3079407809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10577758</ieee_id><doaj_id>oai_doaj_org_article_08e137e936ad4fe49f65e773cb814d96</doaj_id><sourcerecordid>3079407809</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-14f613f22105a0f23d8c25b6b6e64dd4603e6765c0610286d382364a43c8fe573</originalsourceid><addsrcrecordid>eNpNUclKA0EQHUTBEP0CPQx4ntj7coyTqIGg4ALems5MdZiQTMfuiZC_t80ESV1qod6r5WXZDUYjjJG-H5fl9P19RBBhI8oIJlKfZQOChS4op-L8JL7MrmNcoWQqlbgcZPNJY5etj03MvctfYwd-68MhX-zzB99C_lW82RTaCHXu2_zFt8UEYhd2Vdf8QF76zTZAjI1vr7ILZ9cRro9-mH0-Tj_K52L--jQrx_OiIkp3BWZOYOoIwYhb5AitVUX4QiwECFbXTCAKQgpeIYERUaKmilDBLKOVcsAlHWaznrf2dmW2odnYsDfeNuZQ8GFpbOiaag0GKcBUgqbC1swB005wkJJWC4VZrUXiuuu5tsF_79JdZuV3oU3rG4qkZkgqpFMX7buq9JsYwP1Pxcj8qWB6FcyfCuaoQkLd9qgGAE4QXErJFf0FxcOA8Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3079407809</pqid></control><display><type>article</type><title>Diagnosis of Osteoporosis by Bone X-Ray Based on Non-Destructive Compression</title><source>IEEE Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>DOAJ Directory of Open Access Journals</source><creator>Jiang, Chao ; Cheng, Yuqi ; Cheng, Baosheng</creator><creatorcontrib>Jiang, Chao ; Cheng, Yuqi ; Cheng, Baosheng</creatorcontrib><description>X-ray is a commonly used imaging method for the diagnosis and evaluation of osteoporosis, which has crucial clinical diagnostic significance. To ensure the high fidelity requirements of medical image diagnosis and achieve high-quality transmission and storage of image data, this study uses deep learning to design a dual stream lossless compression network suitable for X-ray images. The results demonstrated that the designed network performed well in compression and bit rates on different datasets, with a minimum bit rate of 0.204 and a maximum compression rate of 0.946. Compared to other advanced models, this network had the highest peak signal-to-noise ratio and lower distortion of compressed images. In the compression process of X-ray images of osteoporosis, this network outperformed other models in different structural similarity indices, with values above 0.90, showing significant advantages. The equivalent number of views of the compressed image reached 0.93, and the visual quality of the lossless compressed image was high, ensuring the efficiency and accuracy of diagnosis. The research method can significantly improve the theoretical research level of lossless compression technology and enhance its practical value in remote medical diagnosis.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3421279</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Codecs ; Data compression ; Diagnosis ; Entropy ; Image coding ; Image compression ; Image enhancement ; Image quality ; Image transmission ; Lossless compression ; Mathematical models ; Medical diagnostic imaging ; Medical imaging ; Medical research ; neural network ; Nondestructive testing ; Osteoporosis ; Signal to noise ratio ; X ray imagery ; X-ray ; X-ray imaging</subject><ispartof>IEEE access, 2024, Vol.12, p.93946-93956</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0007-1484-9207</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10577758$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,4025,27637,27927,27928,27929,54937</link.rule.ids></links><search><creatorcontrib>Jiang, Chao</creatorcontrib><creatorcontrib>Cheng, Yuqi</creatorcontrib><creatorcontrib>Cheng, Baosheng</creatorcontrib><title>Diagnosis of Osteoporosis by Bone X-Ray Based on Non-Destructive Compression</title><title>IEEE access</title><addtitle>Access</addtitle><description>X-ray is a commonly used imaging method for the diagnosis and evaluation of osteoporosis, which has crucial clinical diagnostic significance. To ensure the high fidelity requirements of medical image diagnosis and achieve high-quality transmission and storage of image data, this study uses deep learning to design a dual stream lossless compression network suitable for X-ray images. The results demonstrated that the designed network performed well in compression and bit rates on different datasets, with a minimum bit rate of 0.204 and a maximum compression rate of 0.946. Compared to other advanced models, this network had the highest peak signal-to-noise ratio and lower distortion of compressed images. In the compression process of X-ray images of osteoporosis, this network outperformed other models in different structural similarity indices, with values above 0.90, showing significant advantages. The equivalent number of views of the compressed image reached 0.93, and the visual quality of the lossless compressed image was high, ensuring the efficiency and accuracy of diagnosis. The research method can significantly improve the theoretical research level of lossless compression technology and enhance its practical value in remote medical diagnosis.</description><subject>Codecs</subject><subject>Data compression</subject><subject>Diagnosis</subject><subject>Entropy</subject><subject>Image coding</subject><subject>Image compression</subject><subject>Image enhancement</subject><subject>Image quality</subject><subject>Image transmission</subject><subject>Lossless compression</subject><subject>Mathematical models</subject><subject>Medical diagnostic imaging</subject><subject>Medical imaging</subject><subject>Medical research</subject><subject>neural network</subject><subject>Nondestructive testing</subject><subject>Osteoporosis</subject><subject>Signal to noise ratio</subject><subject>X ray imagery</subject><subject>X-ray</subject><subject>X-ray imaging</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUclKA0EQHUTBEP0CPQx4ntj7coyTqIGg4ALems5MdZiQTMfuiZC_t80ESV1qod6r5WXZDUYjjJG-H5fl9P19RBBhI8oIJlKfZQOChS4op-L8JL7MrmNcoWQqlbgcZPNJY5etj03MvctfYwd-68MhX-zzB99C_lW82RTaCHXu2_zFt8UEYhd2Vdf8QF76zTZAjI1vr7ILZ9cRro9-mH0-Tj_K52L--jQrx_OiIkp3BWZOYOoIwYhb5AitVUX4QiwECFbXTCAKQgpeIYERUaKmilDBLKOVcsAlHWaznrf2dmW2odnYsDfeNuZQ8GFpbOiaag0GKcBUgqbC1swB005wkJJWC4VZrUXiuuu5tsF_79JdZuV3oU3rG4qkZkgqpFMX7buq9JsYwP1Pxcj8qWB6FcyfCuaoQkLd9qgGAE4QXErJFf0FxcOA8Q</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Jiang, Chao</creator><creator>Cheng, Yuqi</creator><creator>Cheng, Baosheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0007-1484-9207</orcidid></search><sort><creationdate>2024</creationdate><title>Diagnosis of Osteoporosis by Bone X-Ray Based on Non-Destructive Compression</title><author>Jiang, Chao ; Cheng, Yuqi ; Cheng, Baosheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-14f613f22105a0f23d8c25b6b6e64dd4603e6765c0610286d382364a43c8fe573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Codecs</topic><topic>Data compression</topic><topic>Diagnosis</topic><topic>Entropy</topic><topic>Image coding</topic><topic>Image compression</topic><topic>Image enhancement</topic><topic>Image quality</topic><topic>Image transmission</topic><topic>Lossless compression</topic><topic>Mathematical models</topic><topic>Medical diagnostic imaging</topic><topic>Medical imaging</topic><topic>Medical research</topic><topic>neural network</topic><topic>Nondestructive testing</topic><topic>Osteoporosis</topic><topic>Signal to noise ratio</topic><topic>X ray imagery</topic><topic>X-ray</topic><topic>X-ray imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Chao</creatorcontrib><creatorcontrib>Cheng, Yuqi</creatorcontrib><creatorcontrib>Cheng, Baosheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Chao</au><au>Cheng, Yuqi</au><au>Cheng, Baosheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diagnosis of Osteoporosis by Bone X-Ray Based on Non-Destructive Compression</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>93946</spage><epage>93956</epage><pages>93946-93956</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>X-ray is a commonly used imaging method for the diagnosis and evaluation of osteoporosis, which has crucial clinical diagnostic significance. To ensure the high fidelity requirements of medical image diagnosis and achieve high-quality transmission and storage of image data, this study uses deep learning to design a dual stream lossless compression network suitable for X-ray images. The results demonstrated that the designed network performed well in compression and bit rates on different datasets, with a minimum bit rate of 0.204 and a maximum compression rate of 0.946. Compared to other advanced models, this network had the highest peak signal-to-noise ratio and lower distortion of compressed images. In the compression process of X-ray images of osteoporosis, this network outperformed other models in different structural similarity indices, with values above 0.90, showing significant advantages. The equivalent number of views of the compressed image reached 0.93, and the visual quality of the lossless compressed image was high, ensuring the efficiency and accuracy of diagnosis. The research method can significantly improve the theoretical research level of lossless compression technology and enhance its practical value in remote medical diagnosis.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3421279</doi><tpages>11</tpages><orcidid>https://orcid.org/0009-0007-1484-9207</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.93946-93956
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_3079407809
source IEEE Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; DOAJ Directory of Open Access Journals
subjects Codecs
Data compression
Diagnosis
Entropy
Image coding
Image compression
Image enhancement
Image quality
Image transmission
Lossless compression
Mathematical models
Medical diagnostic imaging
Medical imaging
Medical research
neural network
Nondestructive testing
Osteoporosis
Signal to noise ratio
X ray imagery
X-ray
X-ray imaging
title Diagnosis of Osteoporosis by Bone X-Ray Based on Non-Destructive Compression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T20%3A37%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diagnosis%20of%20Osteoporosis%20by%20Bone%20X-Ray%20Based%20on%20Non-Destructive%20Compression&rft.jtitle=IEEE%20access&rft.au=Jiang,%20Chao&rft.date=2024&rft.volume=12&rft.spage=93946&rft.epage=93956&rft.pages=93946-93956&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3421279&rft_dat=%3Cproquest_cross%3E3079407809%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3079407809&rft_id=info:pmid/&rft_ieee_id=10577758&rft_doaj_id=oai_doaj_org_article_08e137e936ad4fe49f65e773cb814d96&rfr_iscdi=true