Diagnosis of Osteoporosis by Bone X-Ray Based on Non-Destructive Compression
X-ray is a commonly used imaging method for the diagnosis and evaluation of osteoporosis, which has crucial clinical diagnostic significance. To ensure the high fidelity requirements of medical image diagnosis and achieve high-quality transmission and storage of image data, this study uses deep lear...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.93946-93956 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 93956 |
---|---|
container_issue | |
container_start_page | 93946 |
container_title | IEEE access |
container_volume | 12 |
creator | Jiang, Chao Cheng, Yuqi Cheng, Baosheng |
description | X-ray is a commonly used imaging method for the diagnosis and evaluation of osteoporosis, which has crucial clinical diagnostic significance. To ensure the high fidelity requirements of medical image diagnosis and achieve high-quality transmission and storage of image data, this study uses deep learning to design a dual stream lossless compression network suitable for X-ray images. The results demonstrated that the designed network performed well in compression and bit rates on different datasets, with a minimum bit rate of 0.204 and a maximum compression rate of 0.946. Compared to other advanced models, this network had the highest peak signal-to-noise ratio and lower distortion of compressed images. In the compression process of X-ray images of osteoporosis, this network outperformed other models in different structural similarity indices, with values above 0.90, showing significant advantages. The equivalent number of views of the compressed image reached 0.93, and the visual quality of the lossless compressed image was high, ensuring the efficiency and accuracy of diagnosis. The research method can significantly improve the theoretical research level of lossless compression technology and enhance its practical value in remote medical diagnosis. |
doi_str_mv | 10.1109/ACCESS.2024.3421279 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3079407809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10577758</ieee_id><doaj_id>oai_doaj_org_article_08e137e936ad4fe49f65e773cb814d96</doaj_id><sourcerecordid>3079407809</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-14f613f22105a0f23d8c25b6b6e64dd4603e6765c0610286d382364a43c8fe573</originalsourceid><addsrcrecordid>eNpNUclKA0EQHUTBEP0CPQx4ntj7coyTqIGg4ALems5MdZiQTMfuiZC_t80ESV1qod6r5WXZDUYjjJG-H5fl9P19RBBhI8oIJlKfZQOChS4op-L8JL7MrmNcoWQqlbgcZPNJY5etj03MvctfYwd-68MhX-zzB99C_lW82RTaCHXu2_zFt8UEYhd2Vdf8QF76zTZAjI1vr7ILZ9cRro9-mH0-Tj_K52L--jQrx_OiIkp3BWZOYOoIwYhb5AitVUX4QiwECFbXTCAKQgpeIYERUaKmilDBLKOVcsAlHWaznrf2dmW2odnYsDfeNuZQ8GFpbOiaag0GKcBUgqbC1swB005wkJJWC4VZrUXiuuu5tsF_79JdZuV3oU3rG4qkZkgqpFMX7buq9JsYwP1Pxcj8qWB6FcyfCuaoQkLd9qgGAE4QXErJFf0FxcOA8Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3079407809</pqid></control><display><type>article</type><title>Diagnosis of Osteoporosis by Bone X-Ray Based on Non-Destructive Compression</title><source>IEEE Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>DOAJ Directory of Open Access Journals</source><creator>Jiang, Chao ; Cheng, Yuqi ; Cheng, Baosheng</creator><creatorcontrib>Jiang, Chao ; Cheng, Yuqi ; Cheng, Baosheng</creatorcontrib><description>X-ray is a commonly used imaging method for the diagnosis and evaluation of osteoporosis, which has crucial clinical diagnostic significance. To ensure the high fidelity requirements of medical image diagnosis and achieve high-quality transmission and storage of image data, this study uses deep learning to design a dual stream lossless compression network suitable for X-ray images. The results demonstrated that the designed network performed well in compression and bit rates on different datasets, with a minimum bit rate of 0.204 and a maximum compression rate of 0.946. Compared to other advanced models, this network had the highest peak signal-to-noise ratio and lower distortion of compressed images. In the compression process of X-ray images of osteoporosis, this network outperformed other models in different structural similarity indices, with values above 0.90, showing significant advantages. The equivalent number of views of the compressed image reached 0.93, and the visual quality of the lossless compressed image was high, ensuring the efficiency and accuracy of diagnosis. The research method can significantly improve the theoretical research level of lossless compression technology and enhance its practical value in remote medical diagnosis.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3421279</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Codecs ; Data compression ; Diagnosis ; Entropy ; Image coding ; Image compression ; Image enhancement ; Image quality ; Image transmission ; Lossless compression ; Mathematical models ; Medical diagnostic imaging ; Medical imaging ; Medical research ; neural network ; Nondestructive testing ; Osteoporosis ; Signal to noise ratio ; X ray imagery ; X-ray ; X-ray imaging</subject><ispartof>IEEE access, 2024, Vol.12, p.93946-93956</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0007-1484-9207</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10577758$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,4025,27637,27927,27928,27929,54937</link.rule.ids></links><search><creatorcontrib>Jiang, Chao</creatorcontrib><creatorcontrib>Cheng, Yuqi</creatorcontrib><creatorcontrib>Cheng, Baosheng</creatorcontrib><title>Diagnosis of Osteoporosis by Bone X-Ray Based on Non-Destructive Compression</title><title>IEEE access</title><addtitle>Access</addtitle><description>X-ray is a commonly used imaging method for the diagnosis and evaluation of osteoporosis, which has crucial clinical diagnostic significance. To ensure the high fidelity requirements of medical image diagnosis and achieve high-quality transmission and storage of image data, this study uses deep learning to design a dual stream lossless compression network suitable for X-ray images. The results demonstrated that the designed network performed well in compression and bit rates on different datasets, with a minimum bit rate of 0.204 and a maximum compression rate of 0.946. Compared to other advanced models, this network had the highest peak signal-to-noise ratio and lower distortion of compressed images. In the compression process of X-ray images of osteoporosis, this network outperformed other models in different structural similarity indices, with values above 0.90, showing significant advantages. The equivalent number of views of the compressed image reached 0.93, and the visual quality of the lossless compressed image was high, ensuring the efficiency and accuracy of diagnosis. The research method can significantly improve the theoretical research level of lossless compression technology and enhance its practical value in remote medical diagnosis.</description><subject>Codecs</subject><subject>Data compression</subject><subject>Diagnosis</subject><subject>Entropy</subject><subject>Image coding</subject><subject>Image compression</subject><subject>Image enhancement</subject><subject>Image quality</subject><subject>Image transmission</subject><subject>Lossless compression</subject><subject>Mathematical models</subject><subject>Medical diagnostic imaging</subject><subject>Medical imaging</subject><subject>Medical research</subject><subject>neural network</subject><subject>Nondestructive testing</subject><subject>Osteoporosis</subject><subject>Signal to noise ratio</subject><subject>X ray imagery</subject><subject>X-ray</subject><subject>X-ray imaging</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUclKA0EQHUTBEP0CPQx4ntj7coyTqIGg4ALems5MdZiQTMfuiZC_t80ESV1qod6r5WXZDUYjjJG-H5fl9P19RBBhI8oIJlKfZQOChS4op-L8JL7MrmNcoWQqlbgcZPNJY5etj03MvctfYwd-68MhX-zzB99C_lW82RTaCHXu2_zFt8UEYhd2Vdf8QF76zTZAjI1vr7ILZ9cRro9-mH0-Tj_K52L--jQrx_OiIkp3BWZOYOoIwYhb5AitVUX4QiwECFbXTCAKQgpeIYERUaKmilDBLKOVcsAlHWaznrf2dmW2odnYsDfeNuZQ8GFpbOiaag0GKcBUgqbC1swB005wkJJWC4VZrUXiuuu5tsF_79JdZuV3oU3rG4qkZkgqpFMX7buq9JsYwP1Pxcj8qWB6FcyfCuaoQkLd9qgGAE4QXErJFf0FxcOA8Q</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Jiang, Chao</creator><creator>Cheng, Yuqi</creator><creator>Cheng, Baosheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0007-1484-9207</orcidid></search><sort><creationdate>2024</creationdate><title>Diagnosis of Osteoporosis by Bone X-Ray Based on Non-Destructive Compression</title><author>Jiang, Chao ; Cheng, Yuqi ; Cheng, Baosheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-14f613f22105a0f23d8c25b6b6e64dd4603e6765c0610286d382364a43c8fe573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Codecs</topic><topic>Data compression</topic><topic>Diagnosis</topic><topic>Entropy</topic><topic>Image coding</topic><topic>Image compression</topic><topic>Image enhancement</topic><topic>Image quality</topic><topic>Image transmission</topic><topic>Lossless compression</topic><topic>Mathematical models</topic><topic>Medical diagnostic imaging</topic><topic>Medical imaging</topic><topic>Medical research</topic><topic>neural network</topic><topic>Nondestructive testing</topic><topic>Osteoporosis</topic><topic>Signal to noise ratio</topic><topic>X ray imagery</topic><topic>X-ray</topic><topic>X-ray imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Chao</creatorcontrib><creatorcontrib>Cheng, Yuqi</creatorcontrib><creatorcontrib>Cheng, Baosheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Chao</au><au>Cheng, Yuqi</au><au>Cheng, Baosheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diagnosis of Osteoporosis by Bone X-Ray Based on Non-Destructive Compression</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>93946</spage><epage>93956</epage><pages>93946-93956</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>X-ray is a commonly used imaging method for the diagnosis and evaluation of osteoporosis, which has crucial clinical diagnostic significance. To ensure the high fidelity requirements of medical image diagnosis and achieve high-quality transmission and storage of image data, this study uses deep learning to design a dual stream lossless compression network suitable for X-ray images. The results demonstrated that the designed network performed well in compression and bit rates on different datasets, with a minimum bit rate of 0.204 and a maximum compression rate of 0.946. Compared to other advanced models, this network had the highest peak signal-to-noise ratio and lower distortion of compressed images. In the compression process of X-ray images of osteoporosis, this network outperformed other models in different structural similarity indices, with values above 0.90, showing significant advantages. The equivalent number of views of the compressed image reached 0.93, and the visual quality of the lossless compressed image was high, ensuring the efficiency and accuracy of diagnosis. The research method can significantly improve the theoretical research level of lossless compression technology and enhance its practical value in remote medical diagnosis.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3421279</doi><tpages>11</tpages><orcidid>https://orcid.org/0009-0007-1484-9207</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.93946-93956 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_3079407809 |
source | IEEE Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; DOAJ Directory of Open Access Journals |
subjects | Codecs Data compression Diagnosis Entropy Image coding Image compression Image enhancement Image quality Image transmission Lossless compression Mathematical models Medical diagnostic imaging Medical imaging Medical research neural network Nondestructive testing Osteoporosis Signal to noise ratio X ray imagery X-ray X-ray imaging |
title | Diagnosis of Osteoporosis by Bone X-Ray Based on Non-Destructive Compression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T20%3A37%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diagnosis%20of%20Osteoporosis%20by%20Bone%20X-Ray%20Based%20on%20Non-Destructive%20Compression&rft.jtitle=IEEE%20access&rft.au=Jiang,%20Chao&rft.date=2024&rft.volume=12&rft.spage=93946&rft.epage=93956&rft.pages=93946-93956&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3421279&rft_dat=%3Cproquest_cross%3E3079407809%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3079407809&rft_id=info:pmid/&rft_ieee_id=10577758&rft_doaj_id=oai_doaj_org_article_08e137e936ad4fe49f65e773cb814d96&rfr_iscdi=true |