RANK: AI-Assisted End-to-End Architecture for Detecting Persistent Attacks in Enterprise Networks

Modern government and enterprise networks are the target of sophisticated multi-step attacks called Advanced Persistent Threats (APTs), designed and carried out by expert adversaries. The prolonged nature of APTs results in overwhelming the analyst with an increasingly impractical number of alerts....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on dependable and secure computing 2024-07, Vol.21 (4), p.3834-3850
Hauptverfasser: Soliman, Hazem M., Sovilj, Dusan, Salmon, Geoff, Rao, Mohan, Mayya, Niranjan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3850
container_issue 4
container_start_page 3834
container_title IEEE transactions on dependable and secure computing
container_volume 21
creator Soliman, Hazem M.
Sovilj, Dusan
Salmon, Geoff
Rao, Mohan
Mayya, Niranjan
description Modern government and enterprise networks are the target of sophisticated multi-step attacks called Advanced Persistent Threats (APTs), designed and carried out by expert adversaries. The prolonged nature of APTs results in overwhelming the analyst with an increasingly impractical number of alerts. As a result, the challenge of APT detection is ideal for automation through artificial intelligence (AI). In this paper, we propose the first, up to our knowledge, end-to-end AI-assisted architecture for detecting APTs - RANK. We propose advanced algorithms and solutions for four consecutive sub-problems: 1) alert templating and merging, 2) alert graph construction, 3) alert graph partitioning into incidents, and 4) incident scoring and prioritization. Additionally, we discuss the necessary optimizations and techniques enabling the system to operate in a real-time fashion. We evaluate our architecture against the 2000 DARPA, Mordor, as well as a large number of real-world datasets from enterprise networks. Extensive results are provided showing four orders-of-magnitude reduction in the amount of data to be reviewed, innovative extraction and security-aware scoring of incidents. The extracted incidents can be further used for downstream tasks. In our experiments where we have access to a portion of alert labels, we are able achieve 87% balanced accuracy.
doi_str_mv 10.1109/TDSC.2023.3338136
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3079386723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10337612</ieee_id><sourcerecordid>3079386723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-bfe7afd65aa5ac01d38049edb4d86027bcf2c0ae301e077fff985d363e340f343</originalsourceid><addsrcrecordid>eNpNkMFOwzAMhiMEEmPwAEgcInHOSOq0ablVY8DENBCMc5SlDnSDdiSZEG9Py3bgZFv6ftv6CDkXfCQEL64WNy_jUcITGAFALiA7IANRSME4F_lh16cyZWmhxDE5CWHFeSLzQg6IeS7nD9e0nLIyhDpErOikqVhsWVdo6e17HdHGrUfqWk9vsJ_q5o0-of_jm0jLGI1dB1o3XTai3_g6IJ1j_G79OpySI2c-Ap7t65C83k4W43s2e7ybjssZs4nMIls6VMZVWWpMaiwXFeRcFlgtZZVnPFFL6xLLDQIXyJVyzhV5WkEGCJI7kDAkl7u9G99-bTFEvWq3vulOauCqgDxTCXSU2FHWtyF4dLr79tP4Hy247k3q3qTuTeq9yS5zscvUiPiPB1CZSOAXRdtvlA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3079386723</pqid></control><display><type>article</type><title>RANK: AI-Assisted End-to-End Architecture for Detecting Persistent Attacks in Enterprise Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Soliman, Hazem M. ; Sovilj, Dusan ; Salmon, Geoff ; Rao, Mohan ; Mayya, Niranjan</creator><creatorcontrib>Soliman, Hazem M. ; Sovilj, Dusan ; Salmon, Geoff ; Rao, Mohan ; Mayya, Niranjan</creatorcontrib><description>Modern government and enterprise networks are the target of sophisticated multi-step attacks called Advanced Persistent Threats (APTs), designed and carried out by expert adversaries. The prolonged nature of APTs results in overwhelming the analyst with an increasingly impractical number of alerts. As a result, the challenge of APT detection is ideal for automation through artificial intelligence (AI). In this paper, we propose the first, up to our knowledge, end-to-end AI-assisted architecture for detecting APTs - RANK. We propose advanced algorithms and solutions for four consecutive sub-problems: 1) alert templating and merging, 2) alert graph construction, 3) alert graph partitioning into incidents, and 4) incident scoring and prioritization. Additionally, we discuss the necessary optimizations and techniques enabling the system to operate in a real-time fashion. We evaluate our architecture against the 2000 DARPA, Mordor, as well as a large number of real-world datasets from enterprise networks. Extensive results are provided showing four orders-of-magnitude reduction in the amount of data to be reviewed, innovative extraction and security-aware scoring of incidents. The extracted incidents can be further used for downstream tasks. In our experiments where we have access to a portion of alert labels, we are able achieve 87% balanced accuracy.</description><identifier>ISSN: 1545-5971</identifier><identifier>EISSN: 1941-0018</identifier><identifier>DOI: 10.1109/TDSC.2023.3338136</identifier><identifier>CODEN: ITDSCM</identifier><language>eng</language><publisher>Washington: IEEE</publisher><subject>Advanced persistent threats ; Algorithms ; Artificial intelligence ; Buildings ; Computer architecture ; Correlation ; Deep learning ; Detectors ; enterprise networks ; intrusion detection ; machine learning ; mathematical optimization ; Merging ; Networks ; Real time ; Security ; security management architecture ; Target detection ; Threat evaluation</subject><ispartof>IEEE transactions on dependable and secure computing, 2024-07, Vol.21 (4), p.3834-3850</ispartof><rights>Copyright IEEE Computer Society 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-bfe7afd65aa5ac01d38049edb4d86027bcf2c0ae301e077fff985d363e340f343</cites><orcidid>0009-0004-8205-7306 ; 0009-0006-6640-5299 ; 0000-0001-9377-3528 ; 0009-0009-2108-6812 ; 0009-0004-5655-3015</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10337612$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27906,27907,54740</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10337612$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Soliman, Hazem M.</creatorcontrib><creatorcontrib>Sovilj, Dusan</creatorcontrib><creatorcontrib>Salmon, Geoff</creatorcontrib><creatorcontrib>Rao, Mohan</creatorcontrib><creatorcontrib>Mayya, Niranjan</creatorcontrib><title>RANK: AI-Assisted End-to-End Architecture for Detecting Persistent Attacks in Enterprise Networks</title><title>IEEE transactions on dependable and secure computing</title><addtitle>TDSC</addtitle><description>Modern government and enterprise networks are the target of sophisticated multi-step attacks called Advanced Persistent Threats (APTs), designed and carried out by expert adversaries. The prolonged nature of APTs results in overwhelming the analyst with an increasingly impractical number of alerts. As a result, the challenge of APT detection is ideal for automation through artificial intelligence (AI). In this paper, we propose the first, up to our knowledge, end-to-end AI-assisted architecture for detecting APTs - RANK. We propose advanced algorithms and solutions for four consecutive sub-problems: 1) alert templating and merging, 2) alert graph construction, 3) alert graph partitioning into incidents, and 4) incident scoring and prioritization. Additionally, we discuss the necessary optimizations and techniques enabling the system to operate in a real-time fashion. We evaluate our architecture against the 2000 DARPA, Mordor, as well as a large number of real-world datasets from enterprise networks. Extensive results are provided showing four orders-of-magnitude reduction in the amount of data to be reviewed, innovative extraction and security-aware scoring of incidents. The extracted incidents can be further used for downstream tasks. In our experiments where we have access to a portion of alert labels, we are able achieve 87% balanced accuracy.</description><subject>Advanced persistent threats</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Buildings</subject><subject>Computer architecture</subject><subject>Correlation</subject><subject>Deep learning</subject><subject>Detectors</subject><subject>enterprise networks</subject><subject>intrusion detection</subject><subject>machine learning</subject><subject>mathematical optimization</subject><subject>Merging</subject><subject>Networks</subject><subject>Real time</subject><subject>Security</subject><subject>security management architecture</subject><subject>Target detection</subject><subject>Threat evaluation</subject><issn>1545-5971</issn><issn>1941-0018</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMFOwzAMhiMEEmPwAEgcInHOSOq0ablVY8DENBCMc5SlDnSDdiSZEG9Py3bgZFv6ftv6CDkXfCQEL64WNy_jUcITGAFALiA7IANRSME4F_lh16cyZWmhxDE5CWHFeSLzQg6IeS7nD9e0nLIyhDpErOikqVhsWVdo6e17HdHGrUfqWk9vsJ_q5o0-of_jm0jLGI1dB1o3XTai3_g6IJ1j_G79OpySI2c-Ap7t65C83k4W43s2e7ybjssZs4nMIls6VMZVWWpMaiwXFeRcFlgtZZVnPFFL6xLLDQIXyJVyzhV5WkEGCJI7kDAkl7u9G99-bTFEvWq3vulOauCqgDxTCXSU2FHWtyF4dLr79tP4Hy247k3q3qTuTeq9yS5zscvUiPiPB1CZSOAXRdtvlA</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Soliman, Hazem M.</creator><creator>Sovilj, Dusan</creator><creator>Salmon, Geoff</creator><creator>Rao, Mohan</creator><creator>Mayya, Niranjan</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0009-0004-8205-7306</orcidid><orcidid>https://orcid.org/0009-0006-6640-5299</orcidid><orcidid>https://orcid.org/0000-0001-9377-3528</orcidid><orcidid>https://orcid.org/0009-0009-2108-6812</orcidid><orcidid>https://orcid.org/0009-0004-5655-3015</orcidid></search><sort><creationdate>20240701</creationdate><title>RANK: AI-Assisted End-to-End Architecture for Detecting Persistent Attacks in Enterprise Networks</title><author>Soliman, Hazem M. ; Sovilj, Dusan ; Salmon, Geoff ; Rao, Mohan ; Mayya, Niranjan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-bfe7afd65aa5ac01d38049edb4d86027bcf2c0ae301e077fff985d363e340f343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Advanced persistent threats</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Buildings</topic><topic>Computer architecture</topic><topic>Correlation</topic><topic>Deep learning</topic><topic>Detectors</topic><topic>enterprise networks</topic><topic>intrusion detection</topic><topic>machine learning</topic><topic>mathematical optimization</topic><topic>Merging</topic><topic>Networks</topic><topic>Real time</topic><topic>Security</topic><topic>security management architecture</topic><topic>Target detection</topic><topic>Threat evaluation</topic><toplevel>online_resources</toplevel><creatorcontrib>Soliman, Hazem M.</creatorcontrib><creatorcontrib>Sovilj, Dusan</creatorcontrib><creatorcontrib>Salmon, Geoff</creatorcontrib><creatorcontrib>Rao, Mohan</creatorcontrib><creatorcontrib>Mayya, Niranjan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>IEEE transactions on dependable and secure computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Soliman, Hazem M.</au><au>Sovilj, Dusan</au><au>Salmon, Geoff</au><au>Rao, Mohan</au><au>Mayya, Niranjan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RANK: AI-Assisted End-to-End Architecture for Detecting Persistent Attacks in Enterprise Networks</atitle><jtitle>IEEE transactions on dependable and secure computing</jtitle><stitle>TDSC</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>21</volume><issue>4</issue><spage>3834</spage><epage>3850</epage><pages>3834-3850</pages><issn>1545-5971</issn><eissn>1941-0018</eissn><coden>ITDSCM</coden><abstract>Modern government and enterprise networks are the target of sophisticated multi-step attacks called Advanced Persistent Threats (APTs), designed and carried out by expert adversaries. The prolonged nature of APTs results in overwhelming the analyst with an increasingly impractical number of alerts. As a result, the challenge of APT detection is ideal for automation through artificial intelligence (AI). In this paper, we propose the first, up to our knowledge, end-to-end AI-assisted architecture for detecting APTs - RANK. We propose advanced algorithms and solutions for four consecutive sub-problems: 1) alert templating and merging, 2) alert graph construction, 3) alert graph partitioning into incidents, and 4) incident scoring and prioritization. Additionally, we discuss the necessary optimizations and techniques enabling the system to operate in a real-time fashion. We evaluate our architecture against the 2000 DARPA, Mordor, as well as a large number of real-world datasets from enterprise networks. Extensive results are provided showing four orders-of-magnitude reduction in the amount of data to be reviewed, innovative extraction and security-aware scoring of incidents. The extracted incidents can be further used for downstream tasks. In our experiments where we have access to a portion of alert labels, we are able achieve 87% balanced accuracy.</abstract><cop>Washington</cop><pub>IEEE</pub><doi>10.1109/TDSC.2023.3338136</doi><tpages>17</tpages><orcidid>https://orcid.org/0009-0004-8205-7306</orcidid><orcidid>https://orcid.org/0009-0006-6640-5299</orcidid><orcidid>https://orcid.org/0000-0001-9377-3528</orcidid><orcidid>https://orcid.org/0009-0009-2108-6812</orcidid><orcidid>https://orcid.org/0009-0004-5655-3015</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-5971
ispartof IEEE transactions on dependable and secure computing, 2024-07, Vol.21 (4), p.3834-3850
issn 1545-5971
1941-0018
language eng
recordid cdi_proquest_journals_3079386723
source IEEE Electronic Library (IEL)
subjects Advanced persistent threats
Algorithms
Artificial intelligence
Buildings
Computer architecture
Correlation
Deep learning
Detectors
enterprise networks
intrusion detection
machine learning
mathematical optimization
Merging
Networks
Real time
Security
security management architecture
Target detection
Threat evaluation
title RANK: AI-Assisted End-to-End Architecture for Detecting Persistent Attacks in Enterprise Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A27%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RANK:%20AI-Assisted%20End-to-End%20Architecture%20for%20Detecting%20Persistent%20Attacks%20in%20Enterprise%20Networks&rft.jtitle=IEEE%20transactions%20on%20dependable%20and%20secure%20computing&rft.au=Soliman,%20Hazem%20M.&rft.date=2024-07-01&rft.volume=21&rft.issue=4&rft.spage=3834&rft.epage=3850&rft.pages=3834-3850&rft.issn=1545-5971&rft.eissn=1941-0018&rft.coden=ITDSCM&rft_id=info:doi/10.1109/TDSC.2023.3338136&rft_dat=%3Cproquest_RIE%3E3079386723%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3079386723&rft_id=info:pmid/&rft_ieee_id=10337612&rfr_iscdi=true