Research on the Use of an Ocean Turbulence Bubble Simulation Model to Analyze Wireless Optical Transmission Characteristics

Turbulent vortices with uneven refractive indices and sizes affect the transmission quality of laser beams in seawater, diminishing the performance of underwater wireless optical communication systems. Currently, the phase screen simulation model constrains the range of turbulent vortex scales that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2024-07, Vol.13 (13), p.2626
Hauptverfasser: Zhu, Yunzhou, Nie, Huan, Liu, Qian, Yang, Yi, Zhang, Jianlei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 13
container_start_page 2626
container_title Electronics (Basel)
container_volume 13
creator Zhu, Yunzhou
Nie, Huan
Liu, Qian
Yang, Yi
Zhang, Jianlei
description Turbulent vortices with uneven refractive indices and sizes affect the transmission quality of laser beams in seawater, diminishing the performance of underwater wireless optical communication systems. Currently, the phase screen simulation model constrains the range of turbulent vortex scales that can be analyzed, and the mutual restrictions of the phase screen parameters are not suitable for use on large-scale turbulent vortices. Referring to the formation process of turbulent vortices based on Kolmogorov’s turbulence structure energy theory, this study abstractly models the process and simulates the ocean turbulence effect as a spherical bubble with turbulent refractive index fluctuations using the Monte Carlo method, which is verified by fitting the probability distribution function of the received light intensity. The influence of the turbulence bubble model’s parameters on light intensity undulation and logarithmic intensity variance, as well as the relationship between logarithmic intensity variance and the equivalent structural constant, are then studied. An equivalent structural constant model of ocean turbulence represented by the bubble model’s parameters is established, which link the theoretical values with simulation values of the transmission characteristics. The simulation results show that the spherical bubble model’s simulation of ocean turbulence is effective and accurate; therefore, the model can provide an effective Monte Carlo simulation method for analyzing the impact of ocean turbulence channel parameters of the large-scale turbulent vortices on wireless underwater optical transmission characteristics.
doi_str_mv 10.3390/electronics13132626
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3079025539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3079025539</sourcerecordid><originalsourceid>FETCH-LOGICAL-c272t-f1c62b64f7ae10c3feb0807be6ac7955208509e191e0d6c0e1c642d963ca900c3</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMoWGp_gZeA59V8dLPNsRa_oFLQFo9LNp2lKemmZrKH6p83pR48OIeZgXne4eUl5JqzWyk1uwMPNsXQOYtccimUUGdkIFilCy20OP-zX5IR4pbl0lxOJBuQ7zdAMNFuaOho2gBdIdDQUtPRhYXcl31seg-dBXrfN40H-u52vTfJZcFrWIOnKdBpZ_zhC-iHi9kOIl3sk7PG02U0He4c4hGfbUw0NkF0mK94RS5a4xFGv3NIVo8Py9lzMV88vcym88KKSqSi5VaJRo3bygBnVrbQsAmrGlDGVrosBZuUTAPXHNhaWQaZH4u1VtIazbJgSG5Of_cxfPaAqd6GPmbHWMucDBNlKXWm5ImyMSBGaOt9dDsTDzVn9THo-p-g5Q_3enWV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3079025539</pqid></control><display><type>article</type><title>Research on the Use of an Ocean Turbulence Bubble Simulation Model to Analyze Wireless Optical Transmission Characteristics</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zhu, Yunzhou ; Nie, Huan ; Liu, Qian ; Yang, Yi ; Zhang, Jianlei</creator><creatorcontrib>Zhu, Yunzhou ; Nie, Huan ; Liu, Qian ; Yang, Yi ; Zhang, Jianlei</creatorcontrib><description>Turbulent vortices with uneven refractive indices and sizes affect the transmission quality of laser beams in seawater, diminishing the performance of underwater wireless optical communication systems. Currently, the phase screen simulation model constrains the range of turbulent vortex scales that can be analyzed, and the mutual restrictions of the phase screen parameters are not suitable for use on large-scale turbulent vortices. Referring to the formation process of turbulent vortices based on Kolmogorov’s turbulence structure energy theory, this study abstractly models the process and simulates the ocean turbulence effect as a spherical bubble with turbulent refractive index fluctuations using the Monte Carlo method, which is verified by fitting the probability distribution function of the received light intensity. The influence of the turbulence bubble model’s parameters on light intensity undulation and logarithmic intensity variance, as well as the relationship between logarithmic intensity variance and the equivalent structural constant, are then studied. An equivalent structural constant model of ocean turbulence represented by the bubble model’s parameters is established, which link the theoretical values with simulation values of the transmission characteristics. The simulation results show that the spherical bubble model’s simulation of ocean turbulence is effective and accurate; therefore, the model can provide an effective Monte Carlo simulation method for analyzing the impact of ocean turbulence channel parameters of the large-scale turbulent vortices on wireless underwater optical transmission characteristics.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics13132626</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Communication ; Communications systems ; Distribution functions ; Energy distribution ; Energy theory ; Equivalence ; Hydrology ; Impact analysis ; Laser beams ; Logarithms ; Luminous intensity ; Monte Carlo simulation ; Normal distribution ; Ocean models ; Oceanic analysis ; Probability distribution functions ; Process parameters ; Propagation ; Refractivity ; Salinity ; Seawater ; Simulation models ; Turbulence ; Turbulent flow ; Underwater communication ; Variance ; Vortices ; Wireless communications</subject><ispartof>Electronics (Basel), 2024-07, Vol.13 (13), p.2626</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c272t-f1c62b64f7ae10c3feb0807be6ac7955208509e191e0d6c0e1c642d963ca900c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhu, Yunzhou</creatorcontrib><creatorcontrib>Nie, Huan</creatorcontrib><creatorcontrib>Liu, Qian</creatorcontrib><creatorcontrib>Yang, Yi</creatorcontrib><creatorcontrib>Zhang, Jianlei</creatorcontrib><title>Research on the Use of an Ocean Turbulence Bubble Simulation Model to Analyze Wireless Optical Transmission Characteristics</title><title>Electronics (Basel)</title><description>Turbulent vortices with uneven refractive indices and sizes affect the transmission quality of laser beams in seawater, diminishing the performance of underwater wireless optical communication systems. Currently, the phase screen simulation model constrains the range of turbulent vortex scales that can be analyzed, and the mutual restrictions of the phase screen parameters are not suitable for use on large-scale turbulent vortices. Referring to the formation process of turbulent vortices based on Kolmogorov’s turbulence structure energy theory, this study abstractly models the process and simulates the ocean turbulence effect as a spherical bubble with turbulent refractive index fluctuations using the Monte Carlo method, which is verified by fitting the probability distribution function of the received light intensity. The influence of the turbulence bubble model’s parameters on light intensity undulation and logarithmic intensity variance, as well as the relationship between logarithmic intensity variance and the equivalent structural constant, are then studied. An equivalent structural constant model of ocean turbulence represented by the bubble model’s parameters is established, which link the theoretical values with simulation values of the transmission characteristics. The simulation results show that the spherical bubble model’s simulation of ocean turbulence is effective and accurate; therefore, the model can provide an effective Monte Carlo simulation method for analyzing the impact of ocean turbulence channel parameters of the large-scale turbulent vortices on wireless underwater optical transmission characteristics.</description><subject>Communication</subject><subject>Communications systems</subject><subject>Distribution functions</subject><subject>Energy distribution</subject><subject>Energy theory</subject><subject>Equivalence</subject><subject>Hydrology</subject><subject>Impact analysis</subject><subject>Laser beams</subject><subject>Logarithms</subject><subject>Luminous intensity</subject><subject>Monte Carlo simulation</subject><subject>Normal distribution</subject><subject>Ocean models</subject><subject>Oceanic analysis</subject><subject>Probability distribution functions</subject><subject>Process parameters</subject><subject>Propagation</subject><subject>Refractivity</subject><subject>Salinity</subject><subject>Seawater</subject><subject>Simulation models</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Underwater communication</subject><subject>Variance</subject><subject>Vortices</subject><subject>Wireless communications</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptkE1LAzEQhoMoWGp_gZeA59V8dLPNsRa_oFLQFo9LNp2lKemmZrKH6p83pR48OIeZgXne4eUl5JqzWyk1uwMPNsXQOYtccimUUGdkIFilCy20OP-zX5IR4pbl0lxOJBuQ7zdAMNFuaOho2gBdIdDQUtPRhYXcl31seg-dBXrfN40H-u52vTfJZcFrWIOnKdBpZ_zhC-iHi9kOIl3sk7PG02U0He4c4hGfbUw0NkF0mK94RS5a4xFGv3NIVo8Py9lzMV88vcym88KKSqSi5VaJRo3bygBnVrbQsAmrGlDGVrosBZuUTAPXHNhaWQaZH4u1VtIazbJgSG5Of_cxfPaAqd6GPmbHWMucDBNlKXWm5ImyMSBGaOt9dDsTDzVn9THo-p-g5Q_3enWV</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Zhu, Yunzhou</creator><creator>Nie, Huan</creator><creator>Liu, Qian</creator><creator>Yang, Yi</creator><creator>Zhang, Jianlei</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20240701</creationdate><title>Research on the Use of an Ocean Turbulence Bubble Simulation Model to Analyze Wireless Optical Transmission Characteristics</title><author>Zhu, Yunzhou ; Nie, Huan ; Liu, Qian ; Yang, Yi ; Zhang, Jianlei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c272t-f1c62b64f7ae10c3feb0807be6ac7955208509e191e0d6c0e1c642d963ca900c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Communication</topic><topic>Communications systems</topic><topic>Distribution functions</topic><topic>Energy distribution</topic><topic>Energy theory</topic><topic>Equivalence</topic><topic>Hydrology</topic><topic>Impact analysis</topic><topic>Laser beams</topic><topic>Logarithms</topic><topic>Luminous intensity</topic><topic>Monte Carlo simulation</topic><topic>Normal distribution</topic><topic>Ocean models</topic><topic>Oceanic analysis</topic><topic>Probability distribution functions</topic><topic>Process parameters</topic><topic>Propagation</topic><topic>Refractivity</topic><topic>Salinity</topic><topic>Seawater</topic><topic>Simulation models</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Underwater communication</topic><topic>Variance</topic><topic>Vortices</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Yunzhou</creatorcontrib><creatorcontrib>Nie, Huan</creatorcontrib><creatorcontrib>Liu, Qian</creatorcontrib><creatorcontrib>Yang, Yi</creatorcontrib><creatorcontrib>Zhang, Jianlei</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Yunzhou</au><au>Nie, Huan</au><au>Liu, Qian</au><au>Yang, Yi</au><au>Zhang, Jianlei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on the Use of an Ocean Turbulence Bubble Simulation Model to Analyze Wireless Optical Transmission Characteristics</atitle><jtitle>Electronics (Basel)</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>13</volume><issue>13</issue><spage>2626</spage><pages>2626-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Turbulent vortices with uneven refractive indices and sizes affect the transmission quality of laser beams in seawater, diminishing the performance of underwater wireless optical communication systems. Currently, the phase screen simulation model constrains the range of turbulent vortex scales that can be analyzed, and the mutual restrictions of the phase screen parameters are not suitable for use on large-scale turbulent vortices. Referring to the formation process of turbulent vortices based on Kolmogorov’s turbulence structure energy theory, this study abstractly models the process and simulates the ocean turbulence effect as a spherical bubble with turbulent refractive index fluctuations using the Monte Carlo method, which is verified by fitting the probability distribution function of the received light intensity. The influence of the turbulence bubble model’s parameters on light intensity undulation and logarithmic intensity variance, as well as the relationship between logarithmic intensity variance and the equivalent structural constant, are then studied. An equivalent structural constant model of ocean turbulence represented by the bubble model’s parameters is established, which link the theoretical values with simulation values of the transmission characteristics. The simulation results show that the spherical bubble model’s simulation of ocean turbulence is effective and accurate; therefore, the model can provide an effective Monte Carlo simulation method for analyzing the impact of ocean turbulence channel parameters of the large-scale turbulent vortices on wireless underwater optical transmission characteristics.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics13132626</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2024-07, Vol.13 (13), p.2626
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_3079025539
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Communication
Communications systems
Distribution functions
Energy distribution
Energy theory
Equivalence
Hydrology
Impact analysis
Laser beams
Logarithms
Luminous intensity
Monte Carlo simulation
Normal distribution
Ocean models
Oceanic analysis
Probability distribution functions
Process parameters
Propagation
Refractivity
Salinity
Seawater
Simulation models
Turbulence
Turbulent flow
Underwater communication
Variance
Vortices
Wireless communications
title Research on the Use of an Ocean Turbulence Bubble Simulation Model to Analyze Wireless Optical Transmission Characteristics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A18%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20the%20Use%20of%20an%20Ocean%20Turbulence%20Bubble%20Simulation%20Model%20to%20Analyze%20Wireless%20Optical%20Transmission%20Characteristics&rft.jtitle=Electronics%20(Basel)&rft.au=Zhu,%20Yunzhou&rft.date=2024-07-01&rft.volume=13&rft.issue=13&rft.spage=2626&rft.pages=2626-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics13132626&rft_dat=%3Cproquest_cross%3E3079025539%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3079025539&rft_id=info:pmid/&rfr_iscdi=true