On the Iitaka volumes of log canonical surfaces and threefolds
Given positive integers \(d\geq\kappa\), and a subset \(\Gamma\subset [0,1]\), let \(\mathrm{Ivol}_{\mathrm{lc}}^{\Gamma}(d,\kappa)\) denote the set of Iitaka volumes of \(d\)-dimensional projective log canonical pairs \((X, B)\) such that the Iitaka--Kodaira dimension \(\kappa(K_X+B)=\kappa\) and t...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-07 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Chen, Guodu Han, Jingjun Liu, Wenfei |
description | Given positive integers \(d\geq\kappa\), and a subset \(\Gamma\subset [0,1]\), let \(\mathrm{Ivol}_{\mathrm{lc}}^{\Gamma}(d,\kappa)\) denote the set of Iitaka volumes of \(d\)-dimensional projective log canonical pairs \((X, B)\) such that the Iitaka--Kodaira dimension \(\kappa(K_X+B)=\kappa\) and the coefficients of \(B\) come from \(\Gamma\). In this paper, we show that, if \(\Gamma\) satisfies the descending chain condition, then so does \(\mathrm{Ivol}_\mathrm{lc}^\Gamma(d,\kappa)\) for \(d\leq 3\). In case \(d\leq 3\) and \(\kappa=1\), \(\Gamma\) and \(\mathrm{Ivol}_\mathrm{lc}^\Gamma(d,\kappa)\) are shown to share more topological properties, such as closedness in \(\mathbb{R}\) and local finiteness of accumulation complexity. In higher dimensions, we show that the set of Iitaka volumes for \(d\)-dimensional klt pairs with Iitaka dimension \(\geq d-2\) satisfies the DCC, partially confirming a conjecture of Zhan Li. We give a more detailed description of the sets of Iitaka volumes for the following classes of projective log canonical surfaces: (1) smooth properly elliptic surfaces, (2) projective log canonical surfaces with coefficients from \(\{0\}\) or \(\{0,1\}\). In particular, the minima as well as the minimal accumulation points are found in these cases. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3078841708</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3078841708</sourcerecordid><originalsourceid>FETCH-proquest_journals_30788417083</originalsourceid><addsrcrecordid>eNqNi7EKwjAUAIMgWLT_8MC5EJPWZnIRRScX9_JoE22NeZrX-P128AOcbri7mciU1pvClEotRM48SCnVtlZVpTOxuwQY7xbO_YgPhA_59LQM5MDTDVoMFPoWPXCKDtvJYOimIVrryHe8EnOHnm3-41Ksj4fr_lS8Ir2T5bEZKMUwqUbL2phyU0uj_6u-jP04GQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3078841708</pqid></control><display><type>article</type><title>On the Iitaka volumes of log canonical surfaces and threefolds</title><source>Free E- Journals</source><creator>Chen, Guodu ; Han, Jingjun ; Liu, Wenfei</creator><creatorcontrib>Chen, Guodu ; Han, Jingjun ; Liu, Wenfei</creatorcontrib><description>Given positive integers \(d\geq\kappa\), and a subset \(\Gamma\subset [0,1]\), let \(\mathrm{Ivol}_{\mathrm{lc}}^{\Gamma}(d,\kappa)\) denote the set of Iitaka volumes of \(d\)-dimensional projective log canonical pairs \((X, B)\) such that the Iitaka--Kodaira dimension \(\kappa(K_X+B)=\kappa\) and the coefficients of \(B\) come from \(\Gamma\). In this paper, we show that, if \(\Gamma\) satisfies the descending chain condition, then so does \(\mathrm{Ivol}_\mathrm{lc}^\Gamma(d,\kappa)\) for \(d\leq 3\). In case \(d\leq 3\) and \(\kappa=1\), \(\Gamma\) and \(\mathrm{Ivol}_\mathrm{lc}^\Gamma(d,\kappa)\) are shown to share more topological properties, such as closedness in \(\mathbb{R}\) and local finiteness of accumulation complexity. In higher dimensions, we show that the set of Iitaka volumes for \(d\)-dimensional klt pairs with Iitaka dimension \(\geq d-2\) satisfies the DCC, partially confirming a conjecture of Zhan Li. We give a more detailed description of the sets of Iitaka volumes for the following classes of projective log canonical surfaces: (1) smooth properly elliptic surfaces, (2) projective log canonical surfaces with coefficients from \(\{0\}\) or \(\{0,1\}\). In particular, the minima as well as the minimal accumulation points are found in these cases.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Accumulation</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Chen, Guodu</creatorcontrib><creatorcontrib>Han, Jingjun</creatorcontrib><creatorcontrib>Liu, Wenfei</creatorcontrib><title>On the Iitaka volumes of log canonical surfaces and threefolds</title><title>arXiv.org</title><description>Given positive integers \(d\geq\kappa\), and a subset \(\Gamma\subset [0,1]\), let \(\mathrm{Ivol}_{\mathrm{lc}}^{\Gamma}(d,\kappa)\) denote the set of Iitaka volumes of \(d\)-dimensional projective log canonical pairs \((X, B)\) such that the Iitaka--Kodaira dimension \(\kappa(K_X+B)=\kappa\) and the coefficients of \(B\) come from \(\Gamma\). In this paper, we show that, if \(\Gamma\) satisfies the descending chain condition, then so does \(\mathrm{Ivol}_\mathrm{lc}^\Gamma(d,\kappa)\) for \(d\leq 3\). In case \(d\leq 3\) and \(\kappa=1\), \(\Gamma\) and \(\mathrm{Ivol}_\mathrm{lc}^\Gamma(d,\kappa)\) are shown to share more topological properties, such as closedness in \(\mathbb{R}\) and local finiteness of accumulation complexity. In higher dimensions, we show that the set of Iitaka volumes for \(d\)-dimensional klt pairs with Iitaka dimension \(\geq d-2\) satisfies the DCC, partially confirming a conjecture of Zhan Li. We give a more detailed description of the sets of Iitaka volumes for the following classes of projective log canonical surfaces: (1) smooth properly elliptic surfaces, (2) projective log canonical surfaces with coefficients from \(\{0\}\) or \(\{0,1\}\). In particular, the minima as well as the minimal accumulation points are found in these cases.</description><subject>Accumulation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi7EKwjAUAIMgWLT_8MC5EJPWZnIRRScX9_JoE22NeZrX-P128AOcbri7mciU1pvClEotRM48SCnVtlZVpTOxuwQY7xbO_YgPhA_59LQM5MDTDVoMFPoWPXCKDtvJYOimIVrryHe8EnOHnm3-41Ksj4fr_lS8Ir2T5bEZKMUwqUbL2phyU0uj_6u-jP04GQ</recordid><startdate>20240710</startdate><enddate>20240710</enddate><creator>Chen, Guodu</creator><creator>Han, Jingjun</creator><creator>Liu, Wenfei</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240710</creationdate><title>On the Iitaka volumes of log canonical surfaces and threefolds</title><author>Chen, Guodu ; Han, Jingjun ; Liu, Wenfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30788417083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accumulation</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Guodu</creatorcontrib><creatorcontrib>Han, Jingjun</creatorcontrib><creatorcontrib>Liu, Wenfei</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Guodu</au><au>Han, Jingjun</au><au>Liu, Wenfei</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On the Iitaka volumes of log canonical surfaces and threefolds</atitle><jtitle>arXiv.org</jtitle><date>2024-07-10</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Given positive integers \(d\geq\kappa\), and a subset \(\Gamma\subset [0,1]\), let \(\mathrm{Ivol}_{\mathrm{lc}}^{\Gamma}(d,\kappa)\) denote the set of Iitaka volumes of \(d\)-dimensional projective log canonical pairs \((X, B)\) such that the Iitaka--Kodaira dimension \(\kappa(K_X+B)=\kappa\) and the coefficients of \(B\) come from \(\Gamma\). In this paper, we show that, if \(\Gamma\) satisfies the descending chain condition, then so does \(\mathrm{Ivol}_\mathrm{lc}^\Gamma(d,\kappa)\) for \(d\leq 3\). In case \(d\leq 3\) and \(\kappa=1\), \(\Gamma\) and \(\mathrm{Ivol}_\mathrm{lc}^\Gamma(d,\kappa)\) are shown to share more topological properties, such as closedness in \(\mathbb{R}\) and local finiteness of accumulation complexity. In higher dimensions, we show that the set of Iitaka volumes for \(d\)-dimensional klt pairs with Iitaka dimension \(\geq d-2\) satisfies the DCC, partially confirming a conjecture of Zhan Li. We give a more detailed description of the sets of Iitaka volumes for the following classes of projective log canonical surfaces: (1) smooth properly elliptic surfaces, (2) projective log canonical surfaces with coefficients from \(\{0\}\) or \(\{0,1\}\). In particular, the minima as well as the minimal accumulation points are found in these cases.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3078841708 |
source | Free E- Journals |
subjects | Accumulation |
title | On the Iitaka volumes of log canonical surfaces and threefolds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A24%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20the%20Iitaka%20volumes%20of%20log%20canonical%20surfaces%20and%20threefolds&rft.jtitle=arXiv.org&rft.au=Chen,%20Guodu&rft.date=2024-07-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3078841708%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3078841708&rft_id=info:pmid/&rfr_iscdi=true |