VEnhancer: Generative Space-Time Enhancement for Video Generation

We present VEnhancer, a generative space-time enhancement framework that improves the existing text-to-video results by adding more details in spatial domain and synthetic detailed motion in temporal domain. Given a generated low-quality video, our approach can increase its spatial and temporal reso...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-07
Hauptverfasser: He, Jingwen, Xue, Tianfan, Liu, Dongyang, Lin, Xinqi, Gao, Peng, Lin, Dahua, Yu, Qiao, Ouyang, Wanli, Liu, Ziwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator He, Jingwen
Xue, Tianfan
Liu, Dongyang
Lin, Xinqi
Gao, Peng
Lin, Dahua
Yu, Qiao
Ouyang, Wanli
Liu, Ziwei
description We present VEnhancer, a generative space-time enhancement framework that improves the existing text-to-video results by adding more details in spatial domain and synthetic detailed motion in temporal domain. Given a generated low-quality video, our approach can increase its spatial and temporal resolution simultaneously with arbitrary up-sampling space and time scales through a unified video diffusion model. Furthermore, VEnhancer effectively removes generated spatial artifacts and temporal flickering of generated videos. To achieve this, basing on a pretrained video diffusion model, we train a video ControlNet and inject it to the diffusion model as a condition on low frame-rate and low-resolution videos. To effectively train this video ControlNet, we design space-time data augmentation as well as video-aware conditioning. Benefiting from the above designs, VEnhancer yields to be stable during training and shares an elegant end-to-end training manner. Extensive experiments show that VEnhancer surpasses existing state-of-the-art video super-resolution and space-time super-resolution methods in enhancing AI-generated videos. Moreover, with VEnhancer, exisiting open-source state-of-the-art text-to-video method, VideoCrafter-2, reaches the top one in video generation benchmark -- VBench.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3078836039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3078836039</sourcerecordid><originalsourceid>FETCH-proquest_journals_30788360393</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwDHPNy0jMS04tslJwT81LLUosySxLVQguSExO1Q3JzE1VgMrnpuaVKKTlFymEZaak5sPV5ufxMLCmJeYUp_JCaW4GZTfXEGcP3YKi_MLS1OKS-Kz80qI8oFS8sYG5hYWxmYGxpTFxqgA1LTj6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3078836039</pqid></control><display><type>article</type><title>VEnhancer: Generative Space-Time Enhancement for Video Generation</title><source>Free E- Journals</source><creator>He, Jingwen ; Xue, Tianfan ; Liu, Dongyang ; Lin, Xinqi ; Gao, Peng ; Lin, Dahua ; Yu, Qiao ; Ouyang, Wanli ; Liu, Ziwei</creator><creatorcontrib>He, Jingwen ; Xue, Tianfan ; Liu, Dongyang ; Lin, Xinqi ; Gao, Peng ; Lin, Dahua ; Yu, Qiao ; Ouyang, Wanli ; Liu, Ziwei</creatorcontrib><description>We present VEnhancer, a generative space-time enhancement framework that improves the existing text-to-video results by adding more details in spatial domain and synthetic detailed motion in temporal domain. Given a generated low-quality video, our approach can increase its spatial and temporal resolution simultaneously with arbitrary up-sampling space and time scales through a unified video diffusion model. Furthermore, VEnhancer effectively removes generated spatial artifacts and temporal flickering of generated videos. To achieve this, basing on a pretrained video diffusion model, we train a video ControlNet and inject it to the diffusion model as a condition on low frame-rate and low-resolution videos. To effectively train this video ControlNet, we design space-time data augmentation as well as video-aware conditioning. Benefiting from the above designs, VEnhancer yields to be stable during training and shares an elegant end-to-end training manner. Extensive experiments show that VEnhancer surpasses existing state-of-the-art video super-resolution and space-time super-resolution methods in enhancing AI-generated videos. Moreover, with VEnhancer, exisiting open-source state-of-the-art text-to-video method, VideoCrafter-2, reaches the top one in video generation benchmark -- VBench.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Data augmentation ; Diffusion rate ; Spacetime ; Temporal resolution ; Video</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>He, Jingwen</creatorcontrib><creatorcontrib>Xue, Tianfan</creatorcontrib><creatorcontrib>Liu, Dongyang</creatorcontrib><creatorcontrib>Lin, Xinqi</creatorcontrib><creatorcontrib>Gao, Peng</creatorcontrib><creatorcontrib>Lin, Dahua</creatorcontrib><creatorcontrib>Yu, Qiao</creatorcontrib><creatorcontrib>Ouyang, Wanli</creatorcontrib><creatorcontrib>Liu, Ziwei</creatorcontrib><title>VEnhancer: Generative Space-Time Enhancement for Video Generation</title><title>arXiv.org</title><description>We present VEnhancer, a generative space-time enhancement framework that improves the existing text-to-video results by adding more details in spatial domain and synthetic detailed motion in temporal domain. Given a generated low-quality video, our approach can increase its spatial and temporal resolution simultaneously with arbitrary up-sampling space and time scales through a unified video diffusion model. Furthermore, VEnhancer effectively removes generated spatial artifacts and temporal flickering of generated videos. To achieve this, basing on a pretrained video diffusion model, we train a video ControlNet and inject it to the diffusion model as a condition on low frame-rate and low-resolution videos. To effectively train this video ControlNet, we design space-time data augmentation as well as video-aware conditioning. Benefiting from the above designs, VEnhancer yields to be stable during training and shares an elegant end-to-end training manner. Extensive experiments show that VEnhancer surpasses existing state-of-the-art video super-resolution and space-time super-resolution methods in enhancing AI-generated videos. Moreover, with VEnhancer, exisiting open-source state-of-the-art text-to-video method, VideoCrafter-2, reaches the top one in video generation benchmark -- VBench.</description><subject>Data augmentation</subject><subject>Diffusion rate</subject><subject>Spacetime</subject><subject>Temporal resolution</subject><subject>Video</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwDHPNy0jMS04tslJwT81LLUosySxLVQguSExO1Q3JzE1VgMrnpuaVKKTlFymEZaak5sPV5ufxMLCmJeYUp_JCaW4GZTfXEGcP3YKi_MLS1OKS-Kz80qI8oFS8sYG5hYWxmYGxpTFxqgA1LTj6</recordid><startdate>20240710</startdate><enddate>20240710</enddate><creator>He, Jingwen</creator><creator>Xue, Tianfan</creator><creator>Liu, Dongyang</creator><creator>Lin, Xinqi</creator><creator>Gao, Peng</creator><creator>Lin, Dahua</creator><creator>Yu, Qiao</creator><creator>Ouyang, Wanli</creator><creator>Liu, Ziwei</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240710</creationdate><title>VEnhancer: Generative Space-Time Enhancement for Video Generation</title><author>He, Jingwen ; Xue, Tianfan ; Liu, Dongyang ; Lin, Xinqi ; Gao, Peng ; Lin, Dahua ; Yu, Qiao ; Ouyang, Wanli ; Liu, Ziwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30788360393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Data augmentation</topic><topic>Diffusion rate</topic><topic>Spacetime</topic><topic>Temporal resolution</topic><topic>Video</topic><toplevel>online_resources</toplevel><creatorcontrib>He, Jingwen</creatorcontrib><creatorcontrib>Xue, Tianfan</creatorcontrib><creatorcontrib>Liu, Dongyang</creatorcontrib><creatorcontrib>Lin, Xinqi</creatorcontrib><creatorcontrib>Gao, Peng</creatorcontrib><creatorcontrib>Lin, Dahua</creatorcontrib><creatorcontrib>Yu, Qiao</creatorcontrib><creatorcontrib>Ouyang, Wanli</creatorcontrib><creatorcontrib>Liu, Ziwei</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Jingwen</au><au>Xue, Tianfan</au><au>Liu, Dongyang</au><au>Lin, Xinqi</au><au>Gao, Peng</au><au>Lin, Dahua</au><au>Yu, Qiao</au><au>Ouyang, Wanli</au><au>Liu, Ziwei</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>VEnhancer: Generative Space-Time Enhancement for Video Generation</atitle><jtitle>arXiv.org</jtitle><date>2024-07-10</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We present VEnhancer, a generative space-time enhancement framework that improves the existing text-to-video results by adding more details in spatial domain and synthetic detailed motion in temporal domain. Given a generated low-quality video, our approach can increase its spatial and temporal resolution simultaneously with arbitrary up-sampling space and time scales through a unified video diffusion model. Furthermore, VEnhancer effectively removes generated spatial artifacts and temporal flickering of generated videos. To achieve this, basing on a pretrained video diffusion model, we train a video ControlNet and inject it to the diffusion model as a condition on low frame-rate and low-resolution videos. To effectively train this video ControlNet, we design space-time data augmentation as well as video-aware conditioning. Benefiting from the above designs, VEnhancer yields to be stable during training and shares an elegant end-to-end training manner. Extensive experiments show that VEnhancer surpasses existing state-of-the-art video super-resolution and space-time super-resolution methods in enhancing AI-generated videos. Moreover, with VEnhancer, exisiting open-source state-of-the-art text-to-video method, VideoCrafter-2, reaches the top one in video generation benchmark -- VBench.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_3078836039
source Free E- Journals
subjects Data augmentation
Diffusion rate
Spacetime
Temporal resolution
Video
title VEnhancer: Generative Space-Time Enhancement for Video Generation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T16%3A02%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=VEnhancer:%20Generative%20Space-Time%20Enhancement%20for%20Video%20Generation&rft.jtitle=arXiv.org&rft.au=He,%20Jingwen&rft.date=2024-07-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3078836039%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3078836039&rft_id=info:pmid/&rfr_iscdi=true