Microstructure based fatigue life prediction of polycrystalline materials using SFEM and CDM
Accurate fatigue life prediction of polycrystalline materials is crucial for many engineering applications. In polycrystalline materials, a significant portion of life is spent in the crack nucleation phase at the microstructural scale. Hence, the total fatigue life shows high sensitivity to the loc...
Gespeichert in:
Veröffentlicht in: | International journal of fracture 2024-08, Vol.247 (2), p.265-284 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 284 |
---|---|
container_issue | 2 |
container_start_page | 265 |
container_title | International journal of fracture |
container_volume | 247 |
creator | Sharma, Deepak Singh, I. V. Kumar, Jalaj Ahmed, Shahnawaz |
description | Accurate fatigue life prediction of polycrystalline materials is crucial for many engineering applications. In polycrystalline materials, a significant portion of life is spent in the crack nucleation phase at the microstructural scale. Hence, the total fatigue life shows high sensitivity to the local microstructure. To predict fatigue life accurately, the microstructure models of polycrystalline material i.e., titanium alloy are virtually generated with the help of the Voronoi tessellation technique. These models incorporate critical microstructural features such as grain size, grain shape, and the volume fraction of different phases within the material. To efficiently predict microstructure sensitive fatigue life, the smooth finite element method (SFEM) is coupled with continuum damage mechanics (CDM). The SFEM provides flexibility in the meshing of complex microstructure geometries as it alleviates the need to use only triangular and quadrilateral elements. Moreover, there is no need of isoparametric mapping and explicit form of shape function derivatives in SFEM, hence it requires less computation time. To obtain the fatigue life (in number of cycles), jump in cycles algorithm is implemented using SFEM-CDM. The numerical results of fatigue life data obtained from simulations are compared with experimental data, which reveals the validity of the present approach. This approach is useful to find out the scatter in fatigue life data of polycrystalline materials along with the source of scatter. |
doi_str_mv | 10.1007/s10704-024-00795-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3078829638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3078829638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-63e0be0d2b27bdacc368d4bbde260bce3be071754ca3b111f0e406e4dbc161d53</originalsourceid><addsrcrecordid>eNp9kDtPwzAQxy0EEqXwBZgsMQfOdhInIyrlIbViADYky49L5SpNgu0M_fakFImN4XTD_3G6HyHXDG4ZgLyLDCTkGfBpQNZFxk_IjBVSZLyU4pTMQMgyq3Nen5OLGLcAUMsqn5HPtbehjymMNo0BqdERHW108psRaesbpENA523yfUf7hg59u7dhH5NuW98h3emEwes20jH6bkPfHpdrqjtHFw_rS3LWTApe_e45-Xhcvi-es9Xr08vifpVZDpCyUiAYBMcNl8Zpa0VZudwYh7wEY1FMomSyyK0WhjHWAOZQYu6MZSVzhZiTm2PvEPqvEWNS234M3XRSCZBVxetSVJOLH12Hh2PARg3B73TYKwbqQFEdKaqJovqhqPgUEsdQnMzdBsNf9T-pb25Cdk0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3078829638</pqid></control><display><type>article</type><title>Microstructure based fatigue life prediction of polycrystalline materials using SFEM and CDM</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sharma, Deepak ; Singh, I. V. ; Kumar, Jalaj ; Ahmed, Shahnawaz</creator><creatorcontrib>Sharma, Deepak ; Singh, I. V. ; Kumar, Jalaj ; Ahmed, Shahnawaz</creatorcontrib><description>Accurate fatigue life prediction of polycrystalline materials is crucial for many engineering applications. In polycrystalline materials, a significant portion of life is spent in the crack nucleation phase at the microstructural scale. Hence, the total fatigue life shows high sensitivity to the local microstructure. To predict fatigue life accurately, the microstructure models of polycrystalline material i.e., titanium alloy are virtually generated with the help of the Voronoi tessellation technique. These models incorporate critical microstructural features such as grain size, grain shape, and the volume fraction of different phases within the material. To efficiently predict microstructure sensitive fatigue life, the smooth finite element method (SFEM) is coupled with continuum damage mechanics (CDM). The SFEM provides flexibility in the meshing of complex microstructure geometries as it alleviates the need to use only triangular and quadrilateral elements. Moreover, there is no need of isoparametric mapping and explicit form of shape function derivatives in SFEM, hence it requires less computation time. To obtain the fatigue life (in number of cycles), jump in cycles algorithm is implemented using SFEM-CDM. The numerical results of fatigue life data obtained from simulations are compared with experimental data, which reveals the validity of the present approach. This approach is useful to find out the scatter in fatigue life data of polycrystalline materials along with the source of scatter.</description><identifier>ISSN: 0376-9429</identifier><identifier>EISSN: 1573-2673</identifier><identifier>DOI: 10.1007/s10704-024-00795-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Automotive Engineering ; Characterization and Evaluation of Materials ; Civil Engineering ; Classical Mechanics ; Continuum damage mechanics ; Crack initiation ; Crack sensitivity ; Engineering ; Fatigue failure ; Fatigue life ; Finite element method ; Fracture mechanics ; Grain size ; Life prediction ; Mechanical Engineering ; Metal fatigue ; Microstructure ; Nucleation ; Polycrystals ; Quadrilaterals ; Scattering ; Shape functions ; Tessellation ; Titanium alloys ; Titanium base alloys ; Voronoi graphs</subject><ispartof>International journal of fracture, 2024-08, Vol.247 (2), p.265-284</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-63e0be0d2b27bdacc368d4bbde260bce3be071754ca3b111f0e406e4dbc161d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10704-024-00795-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10704-024-00795-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Sharma, Deepak</creatorcontrib><creatorcontrib>Singh, I. V.</creatorcontrib><creatorcontrib>Kumar, Jalaj</creatorcontrib><creatorcontrib>Ahmed, Shahnawaz</creatorcontrib><title>Microstructure based fatigue life prediction of polycrystalline materials using SFEM and CDM</title><title>International journal of fracture</title><addtitle>Int J Fract</addtitle><description>Accurate fatigue life prediction of polycrystalline materials is crucial for many engineering applications. In polycrystalline materials, a significant portion of life is spent in the crack nucleation phase at the microstructural scale. Hence, the total fatigue life shows high sensitivity to the local microstructure. To predict fatigue life accurately, the microstructure models of polycrystalline material i.e., titanium alloy are virtually generated with the help of the Voronoi tessellation technique. These models incorporate critical microstructural features such as grain size, grain shape, and the volume fraction of different phases within the material. To efficiently predict microstructure sensitive fatigue life, the smooth finite element method (SFEM) is coupled with continuum damage mechanics (CDM). The SFEM provides flexibility in the meshing of complex microstructure geometries as it alleviates the need to use only triangular and quadrilateral elements. Moreover, there is no need of isoparametric mapping and explicit form of shape function derivatives in SFEM, hence it requires less computation time. To obtain the fatigue life (in number of cycles), jump in cycles algorithm is implemented using SFEM-CDM. The numerical results of fatigue life data obtained from simulations are compared with experimental data, which reveals the validity of the present approach. This approach is useful to find out the scatter in fatigue life data of polycrystalline materials along with the source of scatter.</description><subject>Algorithms</subject><subject>Automotive Engineering</subject><subject>Characterization and Evaluation of Materials</subject><subject>Civil Engineering</subject><subject>Classical Mechanics</subject><subject>Continuum damage mechanics</subject><subject>Crack initiation</subject><subject>Crack sensitivity</subject><subject>Engineering</subject><subject>Fatigue failure</subject><subject>Fatigue life</subject><subject>Finite element method</subject><subject>Fracture mechanics</subject><subject>Grain size</subject><subject>Life prediction</subject><subject>Mechanical Engineering</subject><subject>Metal fatigue</subject><subject>Microstructure</subject><subject>Nucleation</subject><subject>Polycrystals</subject><subject>Quadrilaterals</subject><subject>Scattering</subject><subject>Shape functions</subject><subject>Tessellation</subject><subject>Titanium alloys</subject><subject>Titanium base alloys</subject><subject>Voronoi graphs</subject><issn>0376-9429</issn><issn>1573-2673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAQxy0EEqXwBZgsMQfOdhInIyrlIbViADYky49L5SpNgu0M_fakFImN4XTD_3G6HyHXDG4ZgLyLDCTkGfBpQNZFxk_IjBVSZLyU4pTMQMgyq3Nen5OLGLcAUMsqn5HPtbehjymMNo0BqdERHW108psRaesbpENA523yfUf7hg59u7dhH5NuW98h3emEwes20jH6bkPfHpdrqjtHFw_rS3LWTApe_e45-Xhcvi-es9Xr08vifpVZDpCyUiAYBMcNl8Zpa0VZudwYh7wEY1FMomSyyK0WhjHWAOZQYu6MZSVzhZiTm2PvEPqvEWNS234M3XRSCZBVxetSVJOLH12Hh2PARg3B73TYKwbqQFEdKaqJovqhqPgUEsdQnMzdBsNf9T-pb25Cdk0</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Sharma, Deepak</creator><creator>Singh, I. V.</creator><creator>Kumar, Jalaj</creator><creator>Ahmed, Shahnawaz</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240801</creationdate><title>Microstructure based fatigue life prediction of polycrystalline materials using SFEM and CDM</title><author>Sharma, Deepak ; Singh, I. V. ; Kumar, Jalaj ; Ahmed, Shahnawaz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-63e0be0d2b27bdacc368d4bbde260bce3be071754ca3b111f0e406e4dbc161d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Automotive Engineering</topic><topic>Characterization and Evaluation of Materials</topic><topic>Civil Engineering</topic><topic>Classical Mechanics</topic><topic>Continuum damage mechanics</topic><topic>Crack initiation</topic><topic>Crack sensitivity</topic><topic>Engineering</topic><topic>Fatigue failure</topic><topic>Fatigue life</topic><topic>Finite element method</topic><topic>Fracture mechanics</topic><topic>Grain size</topic><topic>Life prediction</topic><topic>Mechanical Engineering</topic><topic>Metal fatigue</topic><topic>Microstructure</topic><topic>Nucleation</topic><topic>Polycrystals</topic><topic>Quadrilaterals</topic><topic>Scattering</topic><topic>Shape functions</topic><topic>Tessellation</topic><topic>Titanium alloys</topic><topic>Titanium base alloys</topic><topic>Voronoi graphs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Deepak</creatorcontrib><creatorcontrib>Singh, I. V.</creatorcontrib><creatorcontrib>Kumar, Jalaj</creatorcontrib><creatorcontrib>Ahmed, Shahnawaz</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of fracture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Deepak</au><au>Singh, I. V.</au><au>Kumar, Jalaj</au><au>Ahmed, Shahnawaz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure based fatigue life prediction of polycrystalline materials using SFEM and CDM</atitle><jtitle>International journal of fracture</jtitle><stitle>Int J Fract</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>247</volume><issue>2</issue><spage>265</spage><epage>284</epage><pages>265-284</pages><issn>0376-9429</issn><eissn>1573-2673</eissn><abstract>Accurate fatigue life prediction of polycrystalline materials is crucial for many engineering applications. In polycrystalline materials, a significant portion of life is spent in the crack nucleation phase at the microstructural scale. Hence, the total fatigue life shows high sensitivity to the local microstructure. To predict fatigue life accurately, the microstructure models of polycrystalline material i.e., titanium alloy are virtually generated with the help of the Voronoi tessellation technique. These models incorporate critical microstructural features such as grain size, grain shape, and the volume fraction of different phases within the material. To efficiently predict microstructure sensitive fatigue life, the smooth finite element method (SFEM) is coupled with continuum damage mechanics (CDM). The SFEM provides flexibility in the meshing of complex microstructure geometries as it alleviates the need to use only triangular and quadrilateral elements. Moreover, there is no need of isoparametric mapping and explicit form of shape function derivatives in SFEM, hence it requires less computation time. To obtain the fatigue life (in number of cycles), jump in cycles algorithm is implemented using SFEM-CDM. The numerical results of fatigue life data obtained from simulations are compared with experimental data, which reveals the validity of the present approach. This approach is useful to find out the scatter in fatigue life data of polycrystalline materials along with the source of scatter.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10704-024-00795-2</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0376-9429 |
ispartof | International journal of fracture, 2024-08, Vol.247 (2), p.265-284 |
issn | 0376-9429 1573-2673 |
language | eng |
recordid | cdi_proquest_journals_3078829638 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Automotive Engineering Characterization and Evaluation of Materials Civil Engineering Classical Mechanics Continuum damage mechanics Crack initiation Crack sensitivity Engineering Fatigue failure Fatigue life Finite element method Fracture mechanics Grain size Life prediction Mechanical Engineering Metal fatigue Microstructure Nucleation Polycrystals Quadrilaterals Scattering Shape functions Tessellation Titanium alloys Titanium base alloys Voronoi graphs |
title | Microstructure based fatigue life prediction of polycrystalline materials using SFEM and CDM |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T07%3A19%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20based%20fatigue%20life%20prediction%20of%20polycrystalline%20materials%20using%20SFEM%20and%20CDM&rft.jtitle=International%20journal%20of%20fracture&rft.au=Sharma,%20Deepak&rft.date=2024-08-01&rft.volume=247&rft.issue=2&rft.spage=265&rft.epage=284&rft.pages=265-284&rft.issn=0376-9429&rft.eissn=1573-2673&rft_id=info:doi/10.1007/s10704-024-00795-2&rft_dat=%3Cproquest_cross%3E3078829638%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3078829638&rft_id=info:pmid/&rfr_iscdi=true |