Detection, classification, and rating of electrical faults and power quality

The reliable operation of power systems is essential to prevent over-voltages, excessive currents, outages, and equipment damage, which can pose risks to users and lead to interruptions in the power supply. To address these challenges, a robust power safety system is required to swiftly identify, ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bhat, Shahid Hussain, Saini, Satish, Kaur, Gagandeep, Kumar, Ravi, Mehra, Monika, Chopra, Ranjeev Kumar
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 3121
creator Bhat, Shahid Hussain
Saini, Satish
Kaur, Gagandeep
Kumar, Ravi
Mehra, Monika
Chopra, Ranjeev Kumar
description The reliable operation of power systems is essential to prevent over-voltages, excessive currents, outages, and equipment damage, which can pose risks to users and lead to interruptions in the power supply. To address these challenges, a robust power safety system is required to swiftly identify, categorize, and pinpoint faults, ultimately reducing their impact. This paper presents a comprehensive approach for locating, classifying, and detecting faults within power systems. The primary objectives of this paper are to accurately identify and categorize different fault types occurring at various resistance levels and locations, gain insights into the causes of interruptions, expedite power restoration, and minimize recurrence. Additionally, this research aims to enhance understanding of the components of the protection system, enabling the implementation of preventive measures to reduce the likelihood of service interruptions and equipment damage. To achieve precise problem identification, classification, and fault localization, the proposed approach employs simple neural networks and efficient machine learning models. Leveraging the capabilities of neural networks, this technology yields precise results in power system fault analysis.
doi_str_mv 10.1063/5.0221585
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3078779759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3078779759</sourcerecordid><originalsourceid>FETCH-LOGICAL-p635-ce2c18e8bd6b533142bfbfac14a33b595ba23d349c979f2d1e06be0218e2e5f03</originalsourceid><addsrcrecordid>eNotkE1LxDAQhoMoWFcP_oOAN7FrPpqmOcr6CQUve_AWkjSRLLXtJimy_9643dPM8D4zL_MCcIvRGqOaPrI1IgSzhp2BAjOGS17j-hwUCImqJBX9ugRXMe4QIoLzpgDts03WJD8OD9D0KkbvvFHLrIYOhtwP33B00PaZC1nsoVNzn-JRn8ZfG-B-Vr1Ph2tw4VQf7c2prsD29WW7eS_bz7ePzVNbTjVlpbHE4MY2uqs1oxRXRDvtlMGVolQzwbQitKOVMIILRzpsUa0tInmHWOYQXYG75ewUxv1sY5K7cQ5DdpQU8YZzwZnI1P1CRePT8SM5Bf-jwkFiJP_DkkyewqJ_fd5b2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3078779759</pqid></control><display><type>conference_proceeding</type><title>Detection, classification, and rating of electrical faults and power quality</title><source>AIP Journals Complete</source><creator>Bhat, Shahid Hussain ; Saini, Satish ; Kaur, Gagandeep ; Kumar, Ravi ; Mehra, Monika ; Chopra, Ranjeev Kumar</creator><contributor>Kaur, Sarabpreet ; Jindal, Pardeep Kumar ; Singh, Sajjan</contributor><creatorcontrib>Bhat, Shahid Hussain ; Saini, Satish ; Kaur, Gagandeep ; Kumar, Ravi ; Mehra, Monika ; Chopra, Ranjeev Kumar ; Kaur, Sarabpreet ; Jindal, Pardeep Kumar ; Singh, Sajjan</creatorcontrib><description>The reliable operation of power systems is essential to prevent over-voltages, excessive currents, outages, and equipment damage, which can pose risks to users and lead to interruptions in the power supply. To address these challenges, a robust power safety system is required to swiftly identify, categorize, and pinpoint faults, ultimately reducing their impact. This paper presents a comprehensive approach for locating, classifying, and detecting faults within power systems. The primary objectives of this paper are to accurately identify and categorize different fault types occurring at various resistance levels and locations, gain insights into the causes of interruptions, expedite power restoration, and minimize recurrence. Additionally, this research aims to enhance understanding of the components of the protection system, enabling the implementation of preventive measures to reduce the likelihood of service interruptions and equipment damage. To achieve precise problem identification, classification, and fault localization, the proposed approach employs simple neural networks and efficient machine learning models. Leveraging the capabilities of neural networks, this technology yields precise results in power system fault analysis.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0221585</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Classification ; Damage detection ; Damage localization ; Damage prevention ; Electric power supplies ; Electric power systems ; Electrical faults ; Fault detection ; Fault location ; Faults ; Machine learning ; Neural networks ; Service restoration ; Technology assessment</subject><ispartof>AIP conference proceedings, 2024, Vol.3121 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0221585$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Kaur, Sarabpreet</contributor><contributor>Jindal, Pardeep Kumar</contributor><contributor>Singh, Sajjan</contributor><creatorcontrib>Bhat, Shahid Hussain</creatorcontrib><creatorcontrib>Saini, Satish</creatorcontrib><creatorcontrib>Kaur, Gagandeep</creatorcontrib><creatorcontrib>Kumar, Ravi</creatorcontrib><creatorcontrib>Mehra, Monika</creatorcontrib><creatorcontrib>Chopra, Ranjeev Kumar</creatorcontrib><title>Detection, classification, and rating of electrical faults and power quality</title><title>AIP conference proceedings</title><description>The reliable operation of power systems is essential to prevent over-voltages, excessive currents, outages, and equipment damage, which can pose risks to users and lead to interruptions in the power supply. To address these challenges, a robust power safety system is required to swiftly identify, categorize, and pinpoint faults, ultimately reducing their impact. This paper presents a comprehensive approach for locating, classifying, and detecting faults within power systems. The primary objectives of this paper are to accurately identify and categorize different fault types occurring at various resistance levels and locations, gain insights into the causes of interruptions, expedite power restoration, and minimize recurrence. Additionally, this research aims to enhance understanding of the components of the protection system, enabling the implementation of preventive measures to reduce the likelihood of service interruptions and equipment damage. To achieve precise problem identification, classification, and fault localization, the proposed approach employs simple neural networks and efficient machine learning models. Leveraging the capabilities of neural networks, this technology yields precise results in power system fault analysis.</description><subject>Classification</subject><subject>Damage detection</subject><subject>Damage localization</subject><subject>Damage prevention</subject><subject>Electric power supplies</subject><subject>Electric power systems</subject><subject>Electrical faults</subject><subject>Fault detection</subject><subject>Fault location</subject><subject>Faults</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Service restoration</subject><subject>Technology assessment</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE1LxDAQhoMoWFcP_oOAN7FrPpqmOcr6CQUve_AWkjSRLLXtJimy_9643dPM8D4zL_MCcIvRGqOaPrI1IgSzhp2BAjOGS17j-hwUCImqJBX9ugRXMe4QIoLzpgDts03WJD8OD9D0KkbvvFHLrIYOhtwP33B00PaZC1nsoVNzn-JRn8ZfG-B-Vr1Ph2tw4VQf7c2prsD29WW7eS_bz7ePzVNbTjVlpbHE4MY2uqs1oxRXRDvtlMGVolQzwbQitKOVMIILRzpsUa0tInmHWOYQXYG75ewUxv1sY5K7cQ5DdpQU8YZzwZnI1P1CRePT8SM5Bf-jwkFiJP_DkkyewqJ_fd5b2g</recordid><startdate>20240711</startdate><enddate>20240711</enddate><creator>Bhat, Shahid Hussain</creator><creator>Saini, Satish</creator><creator>Kaur, Gagandeep</creator><creator>Kumar, Ravi</creator><creator>Mehra, Monika</creator><creator>Chopra, Ranjeev Kumar</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240711</creationdate><title>Detection, classification, and rating of electrical faults and power quality</title><author>Bhat, Shahid Hussain ; Saini, Satish ; Kaur, Gagandeep ; Kumar, Ravi ; Mehra, Monika ; Chopra, Ranjeev Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p635-ce2c18e8bd6b533142bfbfac14a33b595ba23d349c979f2d1e06be0218e2e5f03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Classification</topic><topic>Damage detection</topic><topic>Damage localization</topic><topic>Damage prevention</topic><topic>Electric power supplies</topic><topic>Electric power systems</topic><topic>Electrical faults</topic><topic>Fault detection</topic><topic>Fault location</topic><topic>Faults</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Service restoration</topic><topic>Technology assessment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhat, Shahid Hussain</creatorcontrib><creatorcontrib>Saini, Satish</creatorcontrib><creatorcontrib>Kaur, Gagandeep</creatorcontrib><creatorcontrib>Kumar, Ravi</creatorcontrib><creatorcontrib>Mehra, Monika</creatorcontrib><creatorcontrib>Chopra, Ranjeev Kumar</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhat, Shahid Hussain</au><au>Saini, Satish</au><au>Kaur, Gagandeep</au><au>Kumar, Ravi</au><au>Mehra, Monika</au><au>Chopra, Ranjeev Kumar</au><au>Kaur, Sarabpreet</au><au>Jindal, Pardeep Kumar</au><au>Singh, Sajjan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Detection, classification, and rating of electrical faults and power quality</atitle><btitle>AIP conference proceedings</btitle><date>2024-07-11</date><risdate>2024</risdate><volume>3121</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The reliable operation of power systems is essential to prevent over-voltages, excessive currents, outages, and equipment damage, which can pose risks to users and lead to interruptions in the power supply. To address these challenges, a robust power safety system is required to swiftly identify, categorize, and pinpoint faults, ultimately reducing their impact. This paper presents a comprehensive approach for locating, classifying, and detecting faults within power systems. The primary objectives of this paper are to accurately identify and categorize different fault types occurring at various resistance levels and locations, gain insights into the causes of interruptions, expedite power restoration, and minimize recurrence. Additionally, this research aims to enhance understanding of the components of the protection system, enabling the implementation of preventive measures to reduce the likelihood of service interruptions and equipment damage. To achieve precise problem identification, classification, and fault localization, the proposed approach employs simple neural networks and efficient machine learning models. Leveraging the capabilities of neural networks, this technology yields precise results in power system fault analysis.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0221585</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024, Vol.3121 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_3078779759
source AIP Journals Complete
subjects Classification
Damage detection
Damage localization
Damage prevention
Electric power supplies
Electric power systems
Electrical faults
Fault detection
Fault location
Faults
Machine learning
Neural networks
Service restoration
Technology assessment
title Detection, classification, and rating of electrical faults and power quality
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A20%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Detection,%20classification,%20and%20rating%20of%20electrical%20faults%20and%20power%20quality&rft.btitle=AIP%20conference%20proceedings&rft.au=Bhat,%20Shahid%20Hussain&rft.date=2024-07-11&rft.volume=3121&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0221585&rft_dat=%3Cproquest_scita%3E3078779759%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3078779759&rft_id=info:pmid/&rfr_iscdi=true