On the quasi-ergodicity of absorbing Markov chains with unbounded transition densities, including random logistic maps with escape
In this paper, we consider absorbing Markov chains $X_n$ admitting a quasi-stationary measure $\mu $ on M where the transition kernel ${\mathcal P}$ admits an eigenfunction $0\leq \eta \in L^1(M,\mu )$ . We find conditions on the transition densities of ${\mathcal P}$ with respect to $\mu $ which en...
Gespeichert in:
Veröffentlicht in: | Ergodic theory and dynamical systems 2024-07, Vol.44 (7), p.1818-1855 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1855 |
---|---|
container_issue | 7 |
container_start_page | 1818 |
container_title | Ergodic theory and dynamical systems |
container_volume | 44 |
creator | CASTRO, MATHEUS M. GOVERSE, VINCENT P. H. LAMB, JEROEN S. W. RASMUSSEN, MARTIN |
description | In this paper, we consider absorbing Markov chains
$X_n$
admitting a quasi-stationary measure
$\mu $
on M where the transition kernel
${\mathcal P}$
admits an eigenfunction
$0\leq \eta \in L^1(M,\mu )$
. We find conditions on the transition densities of
${\mathcal P}$
with respect to
$\mu $
which ensure that
$\eta (x) \mu (\mathrm {d} x)$
is a quasi-ergodic measure for
$X_n$
and that the Yaglom limit converges to the quasi-stationary measure
$\mu $
-almost surely. We apply this result to the random logistic map
$X_{n+1} = \omega _n X_n (1-X_n)$
absorbed at
${\mathbb R} \setminus [0,1],$
where
$\omega _n$
is an independent and identically distributed sequence of random variables uniformly distributed in
$[a,b],$
for
$1\leq a 4.$ |
doi_str_mv | 10.1017/etds.2023.69 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3078359160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_etds_2023_69</cupid><sourcerecordid>3078359160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-dae51f677694534e8b7b57f21de143fd23327f6854b91841693fb5a3275a8903</originalsourceid><addsrcrecordid>eNptULtOwzAUtRBIlMLGB1hibYId23EyooqXVNSlu-XETurS2KntgFj5chJaiYXpXt17HjoHgFuMUowwv9dRhTRDGUnz8gzMMM3LhFLMz8EMYUoSUjB-Ca5C2CGECOZsBr7XFsathodBBpNo3zplahO_oGugrILzlbEtfJP-3X3AeiuNDfDTxC0cbOUGq7SC0UsbTDTOQqV_Nx0W0Nh6P6iJPL6V6-DetSZEU8NO9icNHWrZ62tw0ch90DenOQebp8fN8iVZrZ9flw-rpCYUxURJzXCTc56XlBGqi4pXjDcZVnrM1qiMkIw3ecFoVeKC4rwkTcXkeGSyKBGZg7ujbO_dYdAhip0bvB0dBUG8IKzE-YRaHFG1dyF43Yjem076L4GRmEoWU8liKlmMDnOQnuCyq7xRrf5T_ZfwA8DvgTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3078359160</pqid></control><display><type>article</type><title>On the quasi-ergodicity of absorbing Markov chains with unbounded transition densities, including random logistic maps with escape</title><source>Cambridge Journals - Connect here FIRST to enable access</source><creator>CASTRO, MATHEUS M. ; GOVERSE, VINCENT P. H. ; LAMB, JEROEN S. W. ; RASMUSSEN, MARTIN</creator><creatorcontrib>CASTRO, MATHEUS M. ; GOVERSE, VINCENT P. H. ; LAMB, JEROEN S. W. ; RASMUSSEN, MARTIN</creatorcontrib><description>In this paper, we consider absorbing Markov chains
$X_n$
admitting a quasi-stationary measure
$\mu $
on M where the transition kernel
${\mathcal P}$
admits an eigenfunction
$0\leq \eta \in L^1(M,\mu )$
. We find conditions on the transition densities of
${\mathcal P}$
with respect to
$\mu $
which ensure that
$\eta (x) \mu (\mathrm {d} x)$
is a quasi-ergodic measure for
$X_n$
and that the Yaglom limit converges to the quasi-stationary measure
$\mu $
-almost surely. We apply this result to the random logistic map
$X_{n+1} = \omega _n X_n (1-X_n)$
absorbed at
${\mathbb R} \setminus [0,1],$
where
$\omega _n$
is an independent and identically distributed sequence of random variables uniformly distributed in
$[a,b],$
for
$1\leq a <4$
and
$b>4.$</description><identifier>ISSN: 0143-3857</identifier><identifier>EISSN: 1469-4417</identifier><identifier>DOI: 10.1017/etds.2023.69</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Dynamical systems ; Eigenvalues ; Eigenvectors ; Ergodic processes ; Hypotheses ; Independent variables ; Markov analysis ; Markov chains ; Original Article ; Random variables</subject><ispartof>Ergodic theory and dynamical systems, 2024-07, Vol.44 (7), p.1818-1855</ispartof><rights>The Author(s), 2023. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-dae51f677694534e8b7b57f21de143fd23327f6854b91841693fb5a3275a8903</citedby><cites>FETCH-LOGICAL-c340t-dae51f677694534e8b7b57f21de143fd23327f6854b91841693fb5a3275a8903</cites><orcidid>0000-0002-7366-4719 ; 0000-0001-7647-4200 ; 0000-0002-2513-2830 ; 0009-0006-7285-5309</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S014338572300069X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>CASTRO, MATHEUS M.</creatorcontrib><creatorcontrib>GOVERSE, VINCENT P. H.</creatorcontrib><creatorcontrib>LAMB, JEROEN S. W.</creatorcontrib><creatorcontrib>RASMUSSEN, MARTIN</creatorcontrib><title>On the quasi-ergodicity of absorbing Markov chains with unbounded transition densities, including random logistic maps with escape</title><title>Ergodic theory and dynamical systems</title><addtitle>Ergod. Th. Dynam. Sys</addtitle><description>In this paper, we consider absorbing Markov chains
$X_n$
admitting a quasi-stationary measure
$\mu $
on M where the transition kernel
${\mathcal P}$
admits an eigenfunction
$0\leq \eta \in L^1(M,\mu )$
. We find conditions on the transition densities of
${\mathcal P}$
with respect to
$\mu $
which ensure that
$\eta (x) \mu (\mathrm {d} x)$
is a quasi-ergodic measure for
$X_n$
and that the Yaglom limit converges to the quasi-stationary measure
$\mu $
-almost surely. We apply this result to the random logistic map
$X_{n+1} = \omega _n X_n (1-X_n)$
absorbed at
${\mathbb R} \setminus [0,1],$
where
$\omega _n$
is an independent and identically distributed sequence of random variables uniformly distributed in
$[a,b],$
for
$1\leq a <4$
and
$b>4.$</description><subject>Dynamical systems</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Ergodic processes</subject><subject>Hypotheses</subject><subject>Independent variables</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Original Article</subject><subject>Random variables</subject><issn>0143-3857</issn><issn>1469-4417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNptULtOwzAUtRBIlMLGB1hibYId23EyooqXVNSlu-XETurS2KntgFj5chJaiYXpXt17HjoHgFuMUowwv9dRhTRDGUnz8gzMMM3LhFLMz8EMYUoSUjB-Ca5C2CGECOZsBr7XFsathodBBpNo3zplahO_oGugrILzlbEtfJP-3X3AeiuNDfDTxC0cbOUGq7SC0UsbTDTOQqV_Nx0W0Nh6P6iJPL6V6-DetSZEU8NO9icNHWrZ62tw0ch90DenOQebp8fN8iVZrZ9flw-rpCYUxURJzXCTc56XlBGqi4pXjDcZVnrM1qiMkIw3ecFoVeKC4rwkTcXkeGSyKBGZg7ujbO_dYdAhip0bvB0dBUG8IKzE-YRaHFG1dyF43Yjem076L4GRmEoWU8liKlmMDnOQnuCyq7xRrf5T_ZfwA8DvgTw</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>CASTRO, MATHEUS M.</creator><creator>GOVERSE, VINCENT P. H.</creator><creator>LAMB, JEROEN S. W.</creator><creator>RASMUSSEN, MARTIN</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7366-4719</orcidid><orcidid>https://orcid.org/0000-0001-7647-4200</orcidid><orcidid>https://orcid.org/0000-0002-2513-2830</orcidid><orcidid>https://orcid.org/0009-0006-7285-5309</orcidid></search><sort><creationdate>20240701</creationdate><title>On the quasi-ergodicity of absorbing Markov chains with unbounded transition densities, including random logistic maps with escape</title><author>CASTRO, MATHEUS M. ; GOVERSE, VINCENT P. H. ; LAMB, JEROEN S. W. ; RASMUSSEN, MARTIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-dae51f677694534e8b7b57f21de143fd23327f6854b91841693fb5a3275a8903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Dynamical systems</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Ergodic processes</topic><topic>Hypotheses</topic><topic>Independent variables</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Original Article</topic><topic>Random variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CASTRO, MATHEUS M.</creatorcontrib><creatorcontrib>GOVERSE, VINCENT P. H.</creatorcontrib><creatorcontrib>LAMB, JEROEN S. W.</creatorcontrib><creatorcontrib>RASMUSSEN, MARTIN</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Ergodic theory and dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CASTRO, MATHEUS M.</au><au>GOVERSE, VINCENT P. H.</au><au>LAMB, JEROEN S. W.</au><au>RASMUSSEN, MARTIN</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the quasi-ergodicity of absorbing Markov chains with unbounded transition densities, including random logistic maps with escape</atitle><jtitle>Ergodic theory and dynamical systems</jtitle><addtitle>Ergod. Th. Dynam. Sys</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>44</volume><issue>7</issue><spage>1818</spage><epage>1855</epage><pages>1818-1855</pages><issn>0143-3857</issn><eissn>1469-4417</eissn><abstract>In this paper, we consider absorbing Markov chains
$X_n$
admitting a quasi-stationary measure
$\mu $
on M where the transition kernel
${\mathcal P}$
admits an eigenfunction
$0\leq \eta \in L^1(M,\mu )$
. We find conditions on the transition densities of
${\mathcal P}$
with respect to
$\mu $
which ensure that
$\eta (x) \mu (\mathrm {d} x)$
is a quasi-ergodic measure for
$X_n$
and that the Yaglom limit converges to the quasi-stationary measure
$\mu $
-almost surely. We apply this result to the random logistic map
$X_{n+1} = \omega _n X_n (1-X_n)$
absorbed at
${\mathbb R} \setminus [0,1],$
where
$\omega _n$
is an independent and identically distributed sequence of random variables uniformly distributed in
$[a,b],$
for
$1\leq a <4$
and
$b>4.$</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/etds.2023.69</doi><tpages>38</tpages><orcidid>https://orcid.org/0000-0002-7366-4719</orcidid><orcidid>https://orcid.org/0000-0001-7647-4200</orcidid><orcidid>https://orcid.org/0000-0002-2513-2830</orcidid><orcidid>https://orcid.org/0009-0006-7285-5309</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-3857 |
ispartof | Ergodic theory and dynamical systems, 2024-07, Vol.44 (7), p.1818-1855 |
issn | 0143-3857 1469-4417 |
language | eng |
recordid | cdi_proquest_journals_3078359160 |
source | Cambridge Journals - Connect here FIRST to enable access |
subjects | Dynamical systems Eigenvalues Eigenvectors Ergodic processes Hypotheses Independent variables Markov analysis Markov chains Original Article Random variables |
title | On the quasi-ergodicity of absorbing Markov chains with unbounded transition densities, including random logistic maps with escape |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T09%3A47%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20quasi-ergodicity%20of%20absorbing%20Markov%20chains%20with%20unbounded%20transition%20densities,%20including%20random%20logistic%20maps%20with%20escape&rft.jtitle=Ergodic%20theory%20and%20dynamical%20systems&rft.au=CASTRO,%20MATHEUS%20M.&rft.date=2024-07-01&rft.volume=44&rft.issue=7&rft.spage=1818&rft.epage=1855&rft.pages=1818-1855&rft.issn=0143-3857&rft.eissn=1469-4417&rft_id=info:doi/10.1017/etds.2023.69&rft_dat=%3Cproquest_cross%3E3078359160%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3078359160&rft_id=info:pmid/&rft_cupid=10_1017_etds_2023_69&rfr_iscdi=true |