Quantum Frequency Mixing using an N-\(V\) Diamond Microscope
Wide-field magnetic microscopy using nitrogen-vacancy (NV) centers in diamond can yield high-quality magnetic images of DC and AC magnetic fields. The unique combination of micron-scale spatial resolution of scalar or vector fields at room temperature and parallel camera readout make this an appeali...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-12 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Karlson, Samuel J Kehayias, Pauli Schloss, Jennifer M Maccabe, Andrew C Libson, Adam Phillips, David F Wang, Guoqing Cappellaro, Paola Braje, Danielle A |
description | Wide-field magnetic microscopy using nitrogen-vacancy (NV) centers in diamond can yield high-quality magnetic images of DC and AC magnetic fields. The unique combination of micron-scale spatial resolution of scalar or vector fields at room temperature and parallel camera readout make this an appealing technique for applications in biology, geology, condensed-matter physics, and electronics. However, while NV magnetic microscopy has achieved great success in these areas, historically the accessible frequency range has been limited. In this paper, we overcome this limitation by implementing the recently developed technique of quantum frequency mixing. With this approach, we generate wide-field magnetic images of test structures driven by alternating currents up to 70 MHz, well outside the reach of DC and Rabi magnetometry methods. With further improvements, this approach could find utility in hyperspectral imaging for electronics power spectrum analysis, electronics diagnostics and troubleshooting, and quantum computing hardware validation. |
doi_str_mv | 10.48550/arxiv.2407.07025 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3078197819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3078197819</sourcerecordid><originalsourceid>FETCH-proquest_journals_30781978193</originalsourceid><addsrcrecordid>eNpjYJA0NNAzsTA1NdBPLKrILNMzMjEw1zMwNzAyZWLgNDI2NtS1MDEy4mDgLS7OMjAwMDIzNzI1NeZksAksTcwrKc1VcCtKLSxNzUuuVPDNrMjMS1coLQaRiXkKfroxGmExmgoumYm5-XkpQPnkovzi5PyCVB4G1rTEnOJUXijNzaDs5hri7KFbUJQPNKy4JD4rv7QoDygVb2xgbmFoCcLGxKkCAJDOPOE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3078197819</pqid></control><display><type>article</type><title>Quantum Frequency Mixing using an N-\(V\) Diamond Microscope</title><source>Free E- Journals</source><creator>Karlson, Samuel J ; Kehayias, Pauli ; Schloss, Jennifer M ; Maccabe, Andrew C ; Libson, Adam ; Phillips, David F ; Wang, Guoqing ; Cappellaro, Paola ; Braje, Danielle A</creator><creatorcontrib>Karlson, Samuel J ; Kehayias, Pauli ; Schloss, Jennifer M ; Maccabe, Andrew C ; Libson, Adam ; Phillips, David F ; Wang, Guoqing ; Cappellaro, Paola ; Braje, Danielle A</creatorcontrib><description>Wide-field magnetic microscopy using nitrogen-vacancy (NV) centers in diamond can yield high-quality magnetic images of DC and AC magnetic fields. The unique combination of micron-scale spatial resolution of scalar or vector fields at room temperature and parallel camera readout make this an appealing technique for applications in biology, geology, condensed-matter physics, and electronics. However, while NV magnetic microscopy has achieved great success in these areas, historically the accessible frequency range has been limited. In this paper, we overcome this limitation by implementing the recently developed technique of quantum frequency mixing. With this approach, we generate wide-field magnetic images of test structures driven by alternating currents up to 70 MHz, well outside the reach of DC and Rabi magnetometry methods. With further improvements, this approach could find utility in hyperspectral imaging for electronics power spectrum analysis, electronics diagnostics and troubleshooting, and quantum computing hardware validation.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2407.07025</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Condensed matter physics ; Electronics ; Fields (mathematics) ; Frequency ranges ; Hyperspectral imaging ; Image quality ; Magnetic measurement ; Microscopy ; Power spectrum analysis ; Quantum computing ; Room temperature ; Spatial resolution ; Troubleshooting</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784,27925</link.rule.ids></links><search><creatorcontrib>Karlson, Samuel J</creatorcontrib><creatorcontrib>Kehayias, Pauli</creatorcontrib><creatorcontrib>Schloss, Jennifer M</creatorcontrib><creatorcontrib>Maccabe, Andrew C</creatorcontrib><creatorcontrib>Libson, Adam</creatorcontrib><creatorcontrib>Phillips, David F</creatorcontrib><creatorcontrib>Wang, Guoqing</creatorcontrib><creatorcontrib>Cappellaro, Paola</creatorcontrib><creatorcontrib>Braje, Danielle A</creatorcontrib><title>Quantum Frequency Mixing using an N-\(V\) Diamond Microscope</title><title>arXiv.org</title><description>Wide-field magnetic microscopy using nitrogen-vacancy (NV) centers in diamond can yield high-quality magnetic images of DC and AC magnetic fields. The unique combination of micron-scale spatial resolution of scalar or vector fields at room temperature and parallel camera readout make this an appealing technique for applications in biology, geology, condensed-matter physics, and electronics. However, while NV magnetic microscopy has achieved great success in these areas, historically the accessible frequency range has been limited. In this paper, we overcome this limitation by implementing the recently developed technique of quantum frequency mixing. With this approach, we generate wide-field magnetic images of test structures driven by alternating currents up to 70 MHz, well outside the reach of DC and Rabi magnetometry methods. With further improvements, this approach could find utility in hyperspectral imaging for electronics power spectrum analysis, electronics diagnostics and troubleshooting, and quantum computing hardware validation.</description><subject>Condensed matter physics</subject><subject>Electronics</subject><subject>Fields (mathematics)</subject><subject>Frequency ranges</subject><subject>Hyperspectral imaging</subject><subject>Image quality</subject><subject>Magnetic measurement</subject><subject>Microscopy</subject><subject>Power spectrum analysis</subject><subject>Quantum computing</subject><subject>Room temperature</subject><subject>Spatial resolution</subject><subject>Troubleshooting</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYJA0NNAzsTA1NdBPLKrILNMzMjEw1zMwNzAyZWLgNDI2NtS1MDEy4mDgLS7OMjAwMDIzNzI1NeZksAksTcwrKc1VcCtKLSxNzUuuVPDNrMjMS1coLQaRiXkKfroxGmExmgoumYm5-XkpQPnkovzi5PyCVB4G1rTEnOJUXijNzaDs5hri7KFbUJQPNKy4JD4rv7QoDygVb2xgbmFoCcLGxKkCAJDOPOE</recordid><startdate>20241216</startdate><enddate>20241216</enddate><creator>Karlson, Samuel J</creator><creator>Kehayias, Pauli</creator><creator>Schloss, Jennifer M</creator><creator>Maccabe, Andrew C</creator><creator>Libson, Adam</creator><creator>Phillips, David F</creator><creator>Wang, Guoqing</creator><creator>Cappellaro, Paola</creator><creator>Braje, Danielle A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241216</creationdate><title>Quantum Frequency Mixing using an N-\(V\) Diamond Microscope</title><author>Karlson, Samuel J ; Kehayias, Pauli ; Schloss, Jennifer M ; Maccabe, Andrew C ; Libson, Adam ; Phillips, David F ; Wang, Guoqing ; Cappellaro, Paola ; Braje, Danielle A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30781978193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Condensed matter physics</topic><topic>Electronics</topic><topic>Fields (mathematics)</topic><topic>Frequency ranges</topic><topic>Hyperspectral imaging</topic><topic>Image quality</topic><topic>Magnetic measurement</topic><topic>Microscopy</topic><topic>Power spectrum analysis</topic><topic>Quantum computing</topic><topic>Room temperature</topic><topic>Spatial resolution</topic><topic>Troubleshooting</topic><toplevel>online_resources</toplevel><creatorcontrib>Karlson, Samuel J</creatorcontrib><creatorcontrib>Kehayias, Pauli</creatorcontrib><creatorcontrib>Schloss, Jennifer M</creatorcontrib><creatorcontrib>Maccabe, Andrew C</creatorcontrib><creatorcontrib>Libson, Adam</creatorcontrib><creatorcontrib>Phillips, David F</creatorcontrib><creatorcontrib>Wang, Guoqing</creatorcontrib><creatorcontrib>Cappellaro, Paola</creatorcontrib><creatorcontrib>Braje, Danielle A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karlson, Samuel J</au><au>Kehayias, Pauli</au><au>Schloss, Jennifer M</au><au>Maccabe, Andrew C</au><au>Libson, Adam</au><au>Phillips, David F</au><au>Wang, Guoqing</au><au>Cappellaro, Paola</au><au>Braje, Danielle A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Quantum Frequency Mixing using an N-\(V\) Diamond Microscope</atitle><jtitle>arXiv.org</jtitle><date>2024-12-16</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Wide-field magnetic microscopy using nitrogen-vacancy (NV) centers in diamond can yield high-quality magnetic images of DC and AC magnetic fields. The unique combination of micron-scale spatial resolution of scalar or vector fields at room temperature and parallel camera readout make this an appealing technique for applications in biology, geology, condensed-matter physics, and electronics. However, while NV magnetic microscopy has achieved great success in these areas, historically the accessible frequency range has been limited. In this paper, we overcome this limitation by implementing the recently developed technique of quantum frequency mixing. With this approach, we generate wide-field magnetic images of test structures driven by alternating currents up to 70 MHz, well outside the reach of DC and Rabi magnetometry methods. With further improvements, this approach could find utility in hyperspectral imaging for electronics power spectrum analysis, electronics diagnostics and troubleshooting, and quantum computing hardware validation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2407.07025</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3078197819 |
source | Free E- Journals |
subjects | Condensed matter physics Electronics Fields (mathematics) Frequency ranges Hyperspectral imaging Image quality Magnetic measurement Microscopy Power spectrum analysis Quantum computing Room temperature Spatial resolution Troubleshooting |
title | Quantum Frequency Mixing using an N-\(V\) Diamond Microscope |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A19%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Quantum%20Frequency%20Mixing%20using%20an%20N-%5C(V%5C)%20Diamond%20Microscope&rft.jtitle=arXiv.org&rft.au=Karlson,%20Samuel%20J&rft.date=2024-12-16&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2407.07025&rft_dat=%3Cproquest%3E3078197819%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3078197819&rft_id=info:pmid/&rfr_iscdi=true |