Quantum Frequency Mixing using an N-\(V\) Diamond Microscope

Wide-field magnetic microscopy using nitrogen-vacancy (NV) centers in diamond can yield high-quality magnetic images of DC and AC magnetic fields. The unique combination of micron-scale spatial resolution of scalar or vector fields at room temperature and parallel camera readout make this an appeali...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-12
Hauptverfasser: Karlson, Samuel J, Kehayias, Pauli, Schloss, Jennifer M, Maccabe, Andrew C, Libson, Adam, Phillips, David F, Wang, Guoqing, Cappellaro, Paola, Braje, Danielle A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Karlson, Samuel J
Kehayias, Pauli
Schloss, Jennifer M
Maccabe, Andrew C
Libson, Adam
Phillips, David F
Wang, Guoqing
Cappellaro, Paola
Braje, Danielle A
description Wide-field magnetic microscopy using nitrogen-vacancy (NV) centers in diamond can yield high-quality magnetic images of DC and AC magnetic fields. The unique combination of micron-scale spatial resolution of scalar or vector fields at room temperature and parallel camera readout make this an appealing technique for applications in biology, geology, condensed-matter physics, and electronics. However, while NV magnetic microscopy has achieved great success in these areas, historically the accessible frequency range has been limited. In this paper, we overcome this limitation by implementing the recently developed technique of quantum frequency mixing. With this approach, we generate wide-field magnetic images of test structures driven by alternating currents up to 70 MHz, well outside the reach of DC and Rabi magnetometry methods. With further improvements, this approach could find utility in hyperspectral imaging for electronics power spectrum analysis, electronics diagnostics and troubleshooting, and quantum computing hardware validation.
doi_str_mv 10.48550/arxiv.2407.07025
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3078197819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3078197819</sourcerecordid><originalsourceid>FETCH-proquest_journals_30781978193</originalsourceid><addsrcrecordid>eNpjYJA0NNAzsTA1NdBPLKrILNMzMjEw1zMwNzAyZWLgNDI2NtS1MDEy4mDgLS7OMjAwMDIzNzI1NeZksAksTcwrKc1VcCtKLSxNzUuuVPDNrMjMS1coLQaRiXkKfroxGmExmgoumYm5-XkpQPnkovzi5PyCVB4G1rTEnOJUXijNzaDs5hri7KFbUJQPNKy4JD4rv7QoDygVb2xgbmFoCcLGxKkCAJDOPOE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3078197819</pqid></control><display><type>article</type><title>Quantum Frequency Mixing using an N-\(V\) Diamond Microscope</title><source>Free E- Journals</source><creator>Karlson, Samuel J ; Kehayias, Pauli ; Schloss, Jennifer M ; Maccabe, Andrew C ; Libson, Adam ; Phillips, David F ; Wang, Guoqing ; Cappellaro, Paola ; Braje, Danielle A</creator><creatorcontrib>Karlson, Samuel J ; Kehayias, Pauli ; Schloss, Jennifer M ; Maccabe, Andrew C ; Libson, Adam ; Phillips, David F ; Wang, Guoqing ; Cappellaro, Paola ; Braje, Danielle A</creatorcontrib><description>Wide-field magnetic microscopy using nitrogen-vacancy (NV) centers in diamond can yield high-quality magnetic images of DC and AC magnetic fields. The unique combination of micron-scale spatial resolution of scalar or vector fields at room temperature and parallel camera readout make this an appealing technique for applications in biology, geology, condensed-matter physics, and electronics. However, while NV magnetic microscopy has achieved great success in these areas, historically the accessible frequency range has been limited. In this paper, we overcome this limitation by implementing the recently developed technique of quantum frequency mixing. With this approach, we generate wide-field magnetic images of test structures driven by alternating currents up to 70 MHz, well outside the reach of DC and Rabi magnetometry methods. With further improvements, this approach could find utility in hyperspectral imaging for electronics power spectrum analysis, electronics diagnostics and troubleshooting, and quantum computing hardware validation.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2407.07025</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Condensed matter physics ; Electronics ; Fields (mathematics) ; Frequency ranges ; Hyperspectral imaging ; Image quality ; Magnetic measurement ; Microscopy ; Power spectrum analysis ; Quantum computing ; Room temperature ; Spatial resolution ; Troubleshooting</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784,27925</link.rule.ids></links><search><creatorcontrib>Karlson, Samuel J</creatorcontrib><creatorcontrib>Kehayias, Pauli</creatorcontrib><creatorcontrib>Schloss, Jennifer M</creatorcontrib><creatorcontrib>Maccabe, Andrew C</creatorcontrib><creatorcontrib>Libson, Adam</creatorcontrib><creatorcontrib>Phillips, David F</creatorcontrib><creatorcontrib>Wang, Guoqing</creatorcontrib><creatorcontrib>Cappellaro, Paola</creatorcontrib><creatorcontrib>Braje, Danielle A</creatorcontrib><title>Quantum Frequency Mixing using an N-\(V\) Diamond Microscope</title><title>arXiv.org</title><description>Wide-field magnetic microscopy using nitrogen-vacancy (NV) centers in diamond can yield high-quality magnetic images of DC and AC magnetic fields. The unique combination of micron-scale spatial resolution of scalar or vector fields at room temperature and parallel camera readout make this an appealing technique for applications in biology, geology, condensed-matter physics, and electronics. However, while NV magnetic microscopy has achieved great success in these areas, historically the accessible frequency range has been limited. In this paper, we overcome this limitation by implementing the recently developed technique of quantum frequency mixing. With this approach, we generate wide-field magnetic images of test structures driven by alternating currents up to 70 MHz, well outside the reach of DC and Rabi magnetometry methods. With further improvements, this approach could find utility in hyperspectral imaging for electronics power spectrum analysis, electronics diagnostics and troubleshooting, and quantum computing hardware validation.</description><subject>Condensed matter physics</subject><subject>Electronics</subject><subject>Fields (mathematics)</subject><subject>Frequency ranges</subject><subject>Hyperspectral imaging</subject><subject>Image quality</subject><subject>Magnetic measurement</subject><subject>Microscopy</subject><subject>Power spectrum analysis</subject><subject>Quantum computing</subject><subject>Room temperature</subject><subject>Spatial resolution</subject><subject>Troubleshooting</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYJA0NNAzsTA1NdBPLKrILNMzMjEw1zMwNzAyZWLgNDI2NtS1MDEy4mDgLS7OMjAwMDIzNzI1NeZksAksTcwrKc1VcCtKLSxNzUuuVPDNrMjMS1coLQaRiXkKfroxGmExmgoumYm5-XkpQPnkovzi5PyCVB4G1rTEnOJUXijNzaDs5hri7KFbUJQPNKy4JD4rv7QoDygVb2xgbmFoCcLGxKkCAJDOPOE</recordid><startdate>20241216</startdate><enddate>20241216</enddate><creator>Karlson, Samuel J</creator><creator>Kehayias, Pauli</creator><creator>Schloss, Jennifer M</creator><creator>Maccabe, Andrew C</creator><creator>Libson, Adam</creator><creator>Phillips, David F</creator><creator>Wang, Guoqing</creator><creator>Cappellaro, Paola</creator><creator>Braje, Danielle A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241216</creationdate><title>Quantum Frequency Mixing using an N-\(V\) Diamond Microscope</title><author>Karlson, Samuel J ; Kehayias, Pauli ; Schloss, Jennifer M ; Maccabe, Andrew C ; Libson, Adam ; Phillips, David F ; Wang, Guoqing ; Cappellaro, Paola ; Braje, Danielle A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30781978193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Condensed matter physics</topic><topic>Electronics</topic><topic>Fields (mathematics)</topic><topic>Frequency ranges</topic><topic>Hyperspectral imaging</topic><topic>Image quality</topic><topic>Magnetic measurement</topic><topic>Microscopy</topic><topic>Power spectrum analysis</topic><topic>Quantum computing</topic><topic>Room temperature</topic><topic>Spatial resolution</topic><topic>Troubleshooting</topic><toplevel>online_resources</toplevel><creatorcontrib>Karlson, Samuel J</creatorcontrib><creatorcontrib>Kehayias, Pauli</creatorcontrib><creatorcontrib>Schloss, Jennifer M</creatorcontrib><creatorcontrib>Maccabe, Andrew C</creatorcontrib><creatorcontrib>Libson, Adam</creatorcontrib><creatorcontrib>Phillips, David F</creatorcontrib><creatorcontrib>Wang, Guoqing</creatorcontrib><creatorcontrib>Cappellaro, Paola</creatorcontrib><creatorcontrib>Braje, Danielle A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karlson, Samuel J</au><au>Kehayias, Pauli</au><au>Schloss, Jennifer M</au><au>Maccabe, Andrew C</au><au>Libson, Adam</au><au>Phillips, David F</au><au>Wang, Guoqing</au><au>Cappellaro, Paola</au><au>Braje, Danielle A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Quantum Frequency Mixing using an N-\(V\) Diamond Microscope</atitle><jtitle>arXiv.org</jtitle><date>2024-12-16</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Wide-field magnetic microscopy using nitrogen-vacancy (NV) centers in diamond can yield high-quality magnetic images of DC and AC magnetic fields. The unique combination of micron-scale spatial resolution of scalar or vector fields at room temperature and parallel camera readout make this an appealing technique for applications in biology, geology, condensed-matter physics, and electronics. However, while NV magnetic microscopy has achieved great success in these areas, historically the accessible frequency range has been limited. In this paper, we overcome this limitation by implementing the recently developed technique of quantum frequency mixing. With this approach, we generate wide-field magnetic images of test structures driven by alternating currents up to 70 MHz, well outside the reach of DC and Rabi magnetometry methods. With further improvements, this approach could find utility in hyperspectral imaging for electronics power spectrum analysis, electronics diagnostics and troubleshooting, and quantum computing hardware validation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2407.07025</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_3078197819
source Free E- Journals
subjects Condensed matter physics
Electronics
Fields (mathematics)
Frequency ranges
Hyperspectral imaging
Image quality
Magnetic measurement
Microscopy
Power spectrum analysis
Quantum computing
Room temperature
Spatial resolution
Troubleshooting
title Quantum Frequency Mixing using an N-\(V\) Diamond Microscope
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A19%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Quantum%20Frequency%20Mixing%20using%20an%20N-%5C(V%5C)%20Diamond%20Microscope&rft.jtitle=arXiv.org&rft.au=Karlson,%20Samuel%20J&rft.date=2024-12-16&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2407.07025&rft_dat=%3Cproquest%3E3078197819%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3078197819&rft_id=info:pmid/&rfr_iscdi=true