A Differentially Private Blockchain-Based Approach for Vertical Federated Learning
We present the Differentially Private Blockchain-Based Vertical Federal Learning (DP-BBVFL) algorithm that provides verifiability and privacy guarantees for decentralized applications. DP-BBVFL uses a smart contract to aggregate the feature representations, i.e., the embeddings, from clients transpa...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-07 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Tran, Linh Chari, Sanjay Md Saikat Islam Khan Zachariah, Aaron Patterson, Stacy Seneviratne, Oshani |
description | We present the Differentially Private Blockchain-Based Vertical Federal Learning (DP-BBVFL) algorithm that provides verifiability and privacy guarantees for decentralized applications. DP-BBVFL uses a smart contract to aggregate the feature representations, i.e., the embeddings, from clients transparently. We apply local differential privacy to provide privacy for embeddings stored on a blockchain, hence protecting the original data. We provide the first prototype application of differential privacy with blockchain for vertical federated learning. Our experiments with medical data show that DP-BBVFL achieves high accuracy with a tradeoff in training time due to on-chain aggregation. This innovative fusion of differential privacy and blockchain technology in DP-BBVFL could herald a new era of collaborative and trustworthy machine learning applications across several decentralized application domains. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3078196859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3078196859</sourcerecordid><originalsourceid>FETCH-proquest_journals_30781968593</originalsourceid><addsrcrecordid>eNqNi70KwjAYAIMgWLTvEHAupIn9G1u1ODiIiGsJ6RebGpKatIJvbwcfwOmGu1uggDIWR_mO0hUKve8JITTNaJKwAF1LfFBSggMzKq71B1-cevMRcKWteIqOKxNV3EOLy2FwlosOS-vwHdyoBNe4hhbc3Lf4DNwZZR4btJRcewh_XKNtfbztT9G8vybwY9PbyZlZNYxkeVykeVKw_6ovuf4_cg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3078196859</pqid></control><display><type>article</type><title>A Differentially Private Blockchain-Based Approach for Vertical Federated Learning</title><source>Free E- Journals</source><creator>Tran, Linh ; Chari, Sanjay ; Md Saikat Islam Khan ; Zachariah, Aaron ; Patterson, Stacy ; Seneviratne, Oshani</creator><creatorcontrib>Tran, Linh ; Chari, Sanjay ; Md Saikat Islam Khan ; Zachariah, Aaron ; Patterson, Stacy ; Seneviratne, Oshani</creatorcontrib><description>We present the Differentially Private Blockchain-Based Vertical Federal Learning (DP-BBVFL) algorithm that provides verifiability and privacy guarantees for decentralized applications. DP-BBVFL uses a smart contract to aggregate the feature representations, i.e., the embeddings, from clients transparently. We apply local differential privacy to provide privacy for embeddings stored on a blockchain, hence protecting the original data. We provide the first prototype application of differential privacy with blockchain for vertical federated learning. Our experiments with medical data show that DP-BBVFL achieves high accuracy with a tradeoff in training time due to on-chain aggregation. This innovative fusion of differential privacy and blockchain technology in DP-BBVFL could herald a new era of collaborative and trustworthy machine learning applications across several decentralized application domains.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Blockchain ; Federated learning ; Machine learning ; Privacy</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Tran, Linh</creatorcontrib><creatorcontrib>Chari, Sanjay</creatorcontrib><creatorcontrib>Md Saikat Islam Khan</creatorcontrib><creatorcontrib>Zachariah, Aaron</creatorcontrib><creatorcontrib>Patterson, Stacy</creatorcontrib><creatorcontrib>Seneviratne, Oshani</creatorcontrib><title>A Differentially Private Blockchain-Based Approach for Vertical Federated Learning</title><title>arXiv.org</title><description>We present the Differentially Private Blockchain-Based Vertical Federal Learning (DP-BBVFL) algorithm that provides verifiability and privacy guarantees for decentralized applications. DP-BBVFL uses a smart contract to aggregate the feature representations, i.e., the embeddings, from clients transparently. We apply local differential privacy to provide privacy for embeddings stored on a blockchain, hence protecting the original data. We provide the first prototype application of differential privacy with blockchain for vertical federated learning. Our experiments with medical data show that DP-BBVFL achieves high accuracy with a tradeoff in training time due to on-chain aggregation. This innovative fusion of differential privacy and blockchain technology in DP-BBVFL could herald a new era of collaborative and trustworthy machine learning applications across several decentralized application domains.</description><subject>Algorithms</subject><subject>Blockchain</subject><subject>Federated learning</subject><subject>Machine learning</subject><subject>Privacy</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi70KwjAYAIMgWLTvEHAupIn9G1u1ODiIiGsJ6RebGpKatIJvbwcfwOmGu1uggDIWR_mO0hUKve8JITTNaJKwAF1LfFBSggMzKq71B1-cevMRcKWteIqOKxNV3EOLy2FwlosOS-vwHdyoBNe4hhbc3Lf4DNwZZR4btJRcewh_XKNtfbztT9G8vybwY9PbyZlZNYxkeVykeVKw_6ovuf4_cg</recordid><startdate>20240709</startdate><enddate>20240709</enddate><creator>Tran, Linh</creator><creator>Chari, Sanjay</creator><creator>Md Saikat Islam Khan</creator><creator>Zachariah, Aaron</creator><creator>Patterson, Stacy</creator><creator>Seneviratne, Oshani</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240709</creationdate><title>A Differentially Private Blockchain-Based Approach for Vertical Federated Learning</title><author>Tran, Linh ; Chari, Sanjay ; Md Saikat Islam Khan ; Zachariah, Aaron ; Patterson, Stacy ; Seneviratne, Oshani</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30781968593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Blockchain</topic><topic>Federated learning</topic><topic>Machine learning</topic><topic>Privacy</topic><toplevel>online_resources</toplevel><creatorcontrib>Tran, Linh</creatorcontrib><creatorcontrib>Chari, Sanjay</creatorcontrib><creatorcontrib>Md Saikat Islam Khan</creatorcontrib><creatorcontrib>Zachariah, Aaron</creatorcontrib><creatorcontrib>Patterson, Stacy</creatorcontrib><creatorcontrib>Seneviratne, Oshani</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tran, Linh</au><au>Chari, Sanjay</au><au>Md Saikat Islam Khan</au><au>Zachariah, Aaron</au><au>Patterson, Stacy</au><au>Seneviratne, Oshani</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Differentially Private Blockchain-Based Approach for Vertical Federated Learning</atitle><jtitle>arXiv.org</jtitle><date>2024-07-09</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We present the Differentially Private Blockchain-Based Vertical Federal Learning (DP-BBVFL) algorithm that provides verifiability and privacy guarantees for decentralized applications. DP-BBVFL uses a smart contract to aggregate the feature representations, i.e., the embeddings, from clients transparently. We apply local differential privacy to provide privacy for embeddings stored on a blockchain, hence protecting the original data. We provide the first prototype application of differential privacy with blockchain for vertical federated learning. Our experiments with medical data show that DP-BBVFL achieves high accuracy with a tradeoff in training time due to on-chain aggregation. This innovative fusion of differential privacy and blockchain technology in DP-BBVFL could herald a new era of collaborative and trustworthy machine learning applications across several decentralized application domains.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3078196859 |
source | Free E- Journals |
subjects | Algorithms Blockchain Federated learning Machine learning Privacy |
title | A Differentially Private Blockchain-Based Approach for Vertical Federated Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A19%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Differentially%20Private%20Blockchain-Based%20Approach%20for%20Vertical%20Federated%20Learning&rft.jtitle=arXiv.org&rft.au=Tran,%20Linh&rft.date=2024-07-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3078196859%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3078196859&rft_id=info:pmid/&rfr_iscdi=true |