On the numerical Terao's conjecture and Ziegler pairs for line arrangements

In this paper we present a smallest possible counterexample to the Numerical Terao's Conjecture in the class of line arrangements in the complex projective plane. Our example consists of a pair of two arrangements with \(13\) lines. Moreover, we use the newly discovered singular matroid realiza...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-07
Hauptverfasser: Kühne, Lukas, Luber, Dante, Pokora, Piotr
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kühne, Lukas
Luber, Dante
Pokora, Piotr
description In this paper we present a smallest possible counterexample to the Numerical Terao's Conjecture in the class of line arrangements in the complex projective plane. Our example consists of a pair of two arrangements with \(13\) lines. Moreover, we use the newly discovered singular matroid realization spaces to construct new examples of pairs of line arrangements having the same underlying matroid but different free resolutions of the Milnor algebras. Such rare arrangements are called Ziegler pairs in the literature.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3078196648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3078196648</sourcerecordid><originalsourceid>FETCH-proquest_journals_30781966483</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtO1xwcCqkSf-cRREcXDq5SKi3NSVN6k3y_nbwAZzO8J0VS4SUedYUQmxY6v3IORdVLcpSJux2txDeCDZOSLpTBlok5Q4eOmdH7EIkBGVf8NA4GCSYlSYPvSMw2i5EpOyAE9rgd2zdK-Mx_XXL9pdze7pmM7lPRB-eo4tkF3pKXjf5saqKRv53fQHt8j0X</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3078196648</pqid></control><display><type>article</type><title>On the numerical Terao's conjecture and Ziegler pairs for line arrangements</title><source>Free E- Journals</source><creator>Kühne, Lukas ; Luber, Dante ; Pokora, Piotr</creator><creatorcontrib>Kühne, Lukas ; Luber, Dante ; Pokora, Piotr</creatorcontrib><description>In this paper we present a smallest possible counterexample to the Numerical Terao's Conjecture in the class of line arrangements in the complex projective plane. Our example consists of a pair of two arrangements with \(13\) lines. Moreover, we use the newly discovered singular matroid realization spaces to construct new examples of pairs of line arrangements having the same underlying matroid but different free resolutions of the Milnor algebras. Such rare arrangements are called Ziegler pairs in the literature.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Kühne, Lukas</creatorcontrib><creatorcontrib>Luber, Dante</creatorcontrib><creatorcontrib>Pokora, Piotr</creatorcontrib><title>On the numerical Terao's conjecture and Ziegler pairs for line arrangements</title><title>arXiv.org</title><description>In this paper we present a smallest possible counterexample to the Numerical Terao's Conjecture in the class of line arrangements in the complex projective plane. Our example consists of a pair of two arrangements with \(13\) lines. Moreover, we use the newly discovered singular matroid realization spaces to construct new examples of pairs of line arrangements having the same underlying matroid but different free resolutions of the Milnor algebras. Such rare arrangements are called Ziegler pairs in the literature.</description><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtO1xwcCqkSf-cRREcXDq5SKi3NSVN6k3y_nbwAZzO8J0VS4SUedYUQmxY6v3IORdVLcpSJux2txDeCDZOSLpTBlok5Q4eOmdH7EIkBGVf8NA4GCSYlSYPvSMw2i5EpOyAE9rgd2zdK-Mx_XXL9pdze7pmM7lPRB-eo4tkF3pKXjf5saqKRv53fQHt8j0X</recordid><startdate>20240709</startdate><enddate>20240709</enddate><creator>Kühne, Lukas</creator><creator>Luber, Dante</creator><creator>Pokora, Piotr</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240709</creationdate><title>On the numerical Terao's conjecture and Ziegler pairs for line arrangements</title><author>Kühne, Lukas ; Luber, Dante ; Pokora, Piotr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30781966483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Kühne, Lukas</creatorcontrib><creatorcontrib>Luber, Dante</creatorcontrib><creatorcontrib>Pokora, Piotr</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kühne, Lukas</au><au>Luber, Dante</au><au>Pokora, Piotr</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On the numerical Terao's conjecture and Ziegler pairs for line arrangements</atitle><jtitle>arXiv.org</jtitle><date>2024-07-09</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In this paper we present a smallest possible counterexample to the Numerical Terao's Conjecture in the class of line arrangements in the complex projective plane. Our example consists of a pair of two arrangements with \(13\) lines. Moreover, we use the newly discovered singular matroid realization spaces to construct new examples of pairs of line arrangements having the same underlying matroid but different free resolutions of the Milnor algebras. Such rare arrangements are called Ziegler pairs in the literature.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_3078196648
source Free E- Journals
title On the numerical Terao's conjecture and Ziegler pairs for line arrangements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T21%3A22%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20the%20numerical%20Terao's%20conjecture%20and%20Ziegler%20pairs%20for%20line%20arrangements&rft.jtitle=arXiv.org&rft.au=K%C3%BChne,%20Lukas&rft.date=2024-07-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3078196648%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3078196648&rft_id=info:pmid/&rfr_iscdi=true