Self-Recognition in Language Models

A rapidly growing number of applications rely on a small set of closed-source language models (LMs). This dependency might introduce novel security risks if LMs develop self-recognition capabilities. Inspired by human identity verification methods, we propose a novel approach for assessing self-reco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-10
Hauptverfasser: Davidson, Tim R, Surkov, Viacheslav, Veselovsky, Veniamin, Russo, Giuseppe, West, Robert, Gulcehre, Caglar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Davidson, Tim R
Surkov, Viacheslav
Veselovsky, Veniamin
Russo, Giuseppe
West, Robert
Gulcehre, Caglar
description A rapidly growing number of applications rely on a small set of closed-source language models (LMs). This dependency might introduce novel security risks if LMs develop self-recognition capabilities. Inspired by human identity verification methods, we propose a novel approach for assessing self-recognition in LMs using model-generated "security questions". Our test can be externally administered to monitor frontier models as it does not require access to internal model parameters or output probabilities. We use our test to examine self-recognition in ten of the most capable open- and closed-source LMs currently publicly available. Our extensive experiments found no empirical evidence of general or consistent self-recognition in any examined LM. Instead, our results suggest that given a set of alternatives, LMs seek to pick the "best" answer, regardless of its origin. Moreover, we find indications that preferences about which models produce the best answers are consistent across LMs. We additionally uncover novel insights on position bias considerations for LMs in multiple-choice settings.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3078195647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3078195647</sourcerecordid><originalsourceid>FETCH-proquest_journals_30781956473</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQDk7NSdMNSk3OT8_LLMnMz1PIzFPwScxLL01MT1XwzU9JzSnmYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4YwNzC0NLUzMTc2PiVAEAeGUuAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3078195647</pqid></control><display><type>article</type><title>Self-Recognition in Language Models</title><source>Free E- Journals</source><creator>Davidson, Tim R ; Surkov, Viacheslav ; Veselovsky, Veniamin ; Russo, Giuseppe ; West, Robert ; Gulcehre, Caglar</creator><creatorcontrib>Davidson, Tim R ; Surkov, Viacheslav ; Veselovsky, Veniamin ; Russo, Giuseppe ; West, Robert ; Gulcehre, Caglar</creatorcontrib><description>A rapidly growing number of applications rely on a small set of closed-source language models (LMs). This dependency might introduce novel security risks if LMs develop self-recognition capabilities. Inspired by human identity verification methods, we propose a novel approach for assessing self-recognition in LMs using model-generated "security questions". Our test can be externally administered to monitor frontier models as it does not require access to internal model parameters or output probabilities. We use our test to examine self-recognition in ten of the most capable open- and closed-source LMs currently publicly available. Our extensive experiments found no empirical evidence of general or consistent self-recognition in any examined LM. Instead, our results suggest that given a set of alternatives, LMs seek to pick the "best" answer, regardless of its origin. Moreover, we find indications that preferences about which models produce the best answers are consistent across LMs. We additionally uncover novel insights on position bias considerations for LMs in multiple-choice settings.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Recognition ; Security</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Davidson, Tim R</creatorcontrib><creatorcontrib>Surkov, Viacheslav</creatorcontrib><creatorcontrib>Veselovsky, Veniamin</creatorcontrib><creatorcontrib>Russo, Giuseppe</creatorcontrib><creatorcontrib>West, Robert</creatorcontrib><creatorcontrib>Gulcehre, Caglar</creatorcontrib><title>Self-Recognition in Language Models</title><title>arXiv.org</title><description>A rapidly growing number of applications rely on a small set of closed-source language models (LMs). This dependency might introduce novel security risks if LMs develop self-recognition capabilities. Inspired by human identity verification methods, we propose a novel approach for assessing self-recognition in LMs using model-generated "security questions". Our test can be externally administered to monitor frontier models as it does not require access to internal model parameters or output probabilities. We use our test to examine self-recognition in ten of the most capable open- and closed-source LMs currently publicly available. Our extensive experiments found no empirical evidence of general or consistent self-recognition in any examined LM. Instead, our results suggest that given a set of alternatives, LMs seek to pick the "best" answer, regardless of its origin. Moreover, we find indications that preferences about which models produce the best answers are consistent across LMs. We additionally uncover novel insights on position bias considerations for LMs in multiple-choice settings.</description><subject>Recognition</subject><subject>Security</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQDk7NSdMNSk3OT8_LLMnMz1PIzFPwScxLL01MT1XwzU9JzSnmYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4YwNzC0NLUzMTc2PiVAEAeGUuAw</recordid><startdate>20241010</startdate><enddate>20241010</enddate><creator>Davidson, Tim R</creator><creator>Surkov, Viacheslav</creator><creator>Veselovsky, Veniamin</creator><creator>Russo, Giuseppe</creator><creator>West, Robert</creator><creator>Gulcehre, Caglar</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241010</creationdate><title>Self-Recognition in Language Models</title><author>Davidson, Tim R ; Surkov, Viacheslav ; Veselovsky, Veniamin ; Russo, Giuseppe ; West, Robert ; Gulcehre, Caglar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30781956473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Recognition</topic><topic>Security</topic><toplevel>online_resources</toplevel><creatorcontrib>Davidson, Tim R</creatorcontrib><creatorcontrib>Surkov, Viacheslav</creatorcontrib><creatorcontrib>Veselovsky, Veniamin</creatorcontrib><creatorcontrib>Russo, Giuseppe</creatorcontrib><creatorcontrib>West, Robert</creatorcontrib><creatorcontrib>Gulcehre, Caglar</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davidson, Tim R</au><au>Surkov, Viacheslav</au><au>Veselovsky, Veniamin</au><au>Russo, Giuseppe</au><au>West, Robert</au><au>Gulcehre, Caglar</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Self-Recognition in Language Models</atitle><jtitle>arXiv.org</jtitle><date>2024-10-10</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>A rapidly growing number of applications rely on a small set of closed-source language models (LMs). This dependency might introduce novel security risks if LMs develop self-recognition capabilities. Inspired by human identity verification methods, we propose a novel approach for assessing self-recognition in LMs using model-generated "security questions". Our test can be externally administered to monitor frontier models as it does not require access to internal model parameters or output probabilities. We use our test to examine self-recognition in ten of the most capable open- and closed-source LMs currently publicly available. Our extensive experiments found no empirical evidence of general or consistent self-recognition in any examined LM. Instead, our results suggest that given a set of alternatives, LMs seek to pick the "best" answer, regardless of its origin. Moreover, we find indications that preferences about which models produce the best answers are consistent across LMs. We additionally uncover novel insights on position bias considerations for LMs in multiple-choice settings.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_3078195647
source Free E- Journals
subjects Recognition
Security
title Self-Recognition in Language Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T03%3A05%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Self-Recognition%20in%20Language%20Models&rft.jtitle=arXiv.org&rft.au=Davidson,%20Tim%20R&rft.date=2024-10-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3078195647%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3078195647&rft_id=info:pmid/&rfr_iscdi=true