Stretchable Metal‐Air Batteries Through Sliding Electrodes

Soft robots and wearable technologies benefit significantly from stretchable batteries, yet the rigid nature of high‐capacity electrodes creates large trade‐offs in battery performance and stretchability. This study introduces a new approach for realizing stretchable batteries by allowing the electr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-07, Vol.34 (28), p.n/a
Hauptverfasser: Shi, Yichao, Ren, Muqing, Sun, Anqian, Johnston, Eric D., Allen, Mark G., Pikul, James H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 28
container_start_page
container_title Advanced functional materials
container_volume 34
creator Shi, Yichao
Ren, Muqing
Sun, Anqian
Johnston, Eric D.
Allen, Mark G.
Pikul, James H.
description Soft robots and wearable technologies benefit significantly from stretchable batteries, yet the rigid nature of high‐capacity electrodes creates large trade‐offs in battery performance and stretchability. This study introduces a new approach for realizing stretchable batteries by allowing the electrodes to slide along a stretchable electrolyte. When the sliding‐electrodes battery is stretched, the forces are transmitted through the hydrogel electrolyte and elastomeric enclosure, while the rigid electrodes slide relative to the hydrogel to maintain interfacial contact. The sliding‐electrodes approach allows 100% of the unstretched battery area to be covered by thick electrodes so that the battery areal capacity and power are improved by up to 10X of prior stretchable designs. Three metal‐air batteries achieve areal capacities of up to 104 mWh cm−2. Further mechanical testing, electrochemical characterization, and integration into soft robotic systems demonstrate the potential of these stretchable batteries in practical applications. The sliding‐electrodes battery can stably power multiple servo motors and sensing circuits under stretching, twisting, bending, and after impact. This research introduces a method for realizing stretchable batteries whereby the electrodes slide along a stretchable electrolyte. The design allows thick and rigid electrodes to cover the entire area of the unstretched battery which enhances areal capacity and power. The stretchable metal‐air batteries power soft robots and actuators while being stretched, twisted, and hammered.
doi_str_mv 10.1002/adfm.202314783
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3077632468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3077632468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3123-aaba38f55bacefae4c08db01bb363553237f2ec14ca13a52e41edd13cc68b0ee3</originalsourceid><addsrcrecordid>eNqFkD1PAkEQQDdGExFtrS-xPtzZuS8TG0RQE4gFmNhtdvfmuCMHh7tLCJ0_wd_oLxFyBkurmeK9meQxdg28B5yLW5UXy57gAiFKMzxhHUggCZGL7PS4w_s5u3BuwTmkKUYddj_1lrwpla4pmJBX9ffnV7-ywYPynmxFLpiVttnMy2BaV3m1mgfDmoy3TU7ukp0VqnZ09Tu77G00nA2ew_Hr08ugPw4NgsBQKa0wK-JYK0OFosjwLNcctMYE4xgFpoUgA5FRgCoWFAHlOaAxSaY5EXbZTXt3bZuPDTkvF83GrvYvJfI0TVBESbanei1lbOOcpUKubbVUdieBy0MheSgkj4X2wl0rbKuadv_Qsv84mvy5Px9Ga5I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3077632468</pqid></control><display><type>article</type><title>Stretchable Metal‐Air Batteries Through Sliding Electrodes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Shi, Yichao ; Ren, Muqing ; Sun, Anqian ; Johnston, Eric D. ; Allen, Mark G. ; Pikul, James H.</creator><creatorcontrib>Shi, Yichao ; Ren, Muqing ; Sun, Anqian ; Johnston, Eric D. ; Allen, Mark G. ; Pikul, James H.</creatorcontrib><description>Soft robots and wearable technologies benefit significantly from stretchable batteries, yet the rigid nature of high‐capacity electrodes creates large trade‐offs in battery performance and stretchability. This study introduces a new approach for realizing stretchable batteries by allowing the electrodes to slide along a stretchable electrolyte. When the sliding‐electrodes battery is stretched, the forces are transmitted through the hydrogel electrolyte and elastomeric enclosure, while the rigid electrodes slide relative to the hydrogel to maintain interfacial contact. The sliding‐electrodes approach allows 100% of the unstretched battery area to be covered by thick electrodes so that the battery areal capacity and power are improved by up to 10X of prior stretchable designs. Three metal‐air batteries achieve areal capacities of up to 104 mWh cm−2. Further mechanical testing, electrochemical characterization, and integration into soft robotic systems demonstrate the potential of these stretchable batteries in practical applications. The sliding‐electrodes battery can stably power multiple servo motors and sensing circuits under stretching, twisting, bending, and after impact. This research introduces a method for realizing stretchable batteries whereby the electrodes slide along a stretchable electrolyte. The design allows thick and rigid electrodes to cover the entire area of the unstretched battery which enhances areal capacity and power. The stretchable metal‐air batteries power soft robots and actuators while being stretched, twisted, and hammered.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202314783</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Elastomers ; Electrochemical analysis ; Electrodes ; Electrolytes ; Hydrogels ; Mechanical properties ; Mechanical tests ; Metal air batteries ; Servomotors ; Sliding ; soft robotics ; Stretchability ; stretchable batteries ; Wearable technology ; wearables</subject><ispartof>Advanced functional materials, 2024-07, Vol.34 (28), p.n/a</ispartof><rights>2024 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3123-aaba38f55bacefae4c08db01bb363553237f2ec14ca13a52e41edd13cc68b0ee3</cites><orcidid>0000-0002-7018-2925</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202314783$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202314783$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Shi, Yichao</creatorcontrib><creatorcontrib>Ren, Muqing</creatorcontrib><creatorcontrib>Sun, Anqian</creatorcontrib><creatorcontrib>Johnston, Eric D.</creatorcontrib><creatorcontrib>Allen, Mark G.</creatorcontrib><creatorcontrib>Pikul, James H.</creatorcontrib><title>Stretchable Metal‐Air Batteries Through Sliding Electrodes</title><title>Advanced functional materials</title><description>Soft robots and wearable technologies benefit significantly from stretchable batteries, yet the rigid nature of high‐capacity electrodes creates large trade‐offs in battery performance and stretchability. This study introduces a new approach for realizing stretchable batteries by allowing the electrodes to slide along a stretchable electrolyte. When the sliding‐electrodes battery is stretched, the forces are transmitted through the hydrogel electrolyte and elastomeric enclosure, while the rigid electrodes slide relative to the hydrogel to maintain interfacial contact. The sliding‐electrodes approach allows 100% of the unstretched battery area to be covered by thick electrodes so that the battery areal capacity and power are improved by up to 10X of prior stretchable designs. Three metal‐air batteries achieve areal capacities of up to 104 mWh cm−2. Further mechanical testing, electrochemical characterization, and integration into soft robotic systems demonstrate the potential of these stretchable batteries in practical applications. The sliding‐electrodes battery can stably power multiple servo motors and sensing circuits under stretching, twisting, bending, and after impact. This research introduces a method for realizing stretchable batteries whereby the electrodes slide along a stretchable electrolyte. The design allows thick and rigid electrodes to cover the entire area of the unstretched battery which enhances areal capacity and power. The stretchable metal‐air batteries power soft robots and actuators while being stretched, twisted, and hammered.</description><subject>Elastomers</subject><subject>Electrochemical analysis</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Hydrogels</subject><subject>Mechanical properties</subject><subject>Mechanical tests</subject><subject>Metal air batteries</subject><subject>Servomotors</subject><subject>Sliding</subject><subject>soft robotics</subject><subject>Stretchability</subject><subject>stretchable batteries</subject><subject>Wearable technology</subject><subject>wearables</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkD1PAkEQQDdGExFtrS-xPtzZuS8TG0RQE4gFmNhtdvfmuCMHh7tLCJ0_wd_oLxFyBkurmeK9meQxdg28B5yLW5UXy57gAiFKMzxhHUggCZGL7PS4w_s5u3BuwTmkKUYddj_1lrwpla4pmJBX9ffnV7-ywYPynmxFLpiVttnMy2BaV3m1mgfDmoy3TU7ukp0VqnZ09Tu77G00nA2ew_Hr08ugPw4NgsBQKa0wK-JYK0OFosjwLNcctMYE4xgFpoUgA5FRgCoWFAHlOaAxSaY5EXbZTXt3bZuPDTkvF83GrvYvJfI0TVBESbanei1lbOOcpUKubbVUdieBy0MheSgkj4X2wl0rbKuadv_Qsv84mvy5Px9Ga5I</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Shi, Yichao</creator><creator>Ren, Muqing</creator><creator>Sun, Anqian</creator><creator>Johnston, Eric D.</creator><creator>Allen, Mark G.</creator><creator>Pikul, James H.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7018-2925</orcidid></search><sort><creationdate>20240701</creationdate><title>Stretchable Metal‐Air Batteries Through Sliding Electrodes</title><author>Shi, Yichao ; Ren, Muqing ; Sun, Anqian ; Johnston, Eric D. ; Allen, Mark G. ; Pikul, James H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3123-aaba38f55bacefae4c08db01bb363553237f2ec14ca13a52e41edd13cc68b0ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Elastomers</topic><topic>Electrochemical analysis</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Hydrogels</topic><topic>Mechanical properties</topic><topic>Mechanical tests</topic><topic>Metal air batteries</topic><topic>Servomotors</topic><topic>Sliding</topic><topic>soft robotics</topic><topic>Stretchability</topic><topic>stretchable batteries</topic><topic>Wearable technology</topic><topic>wearables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Yichao</creatorcontrib><creatorcontrib>Ren, Muqing</creatorcontrib><creatorcontrib>Sun, Anqian</creatorcontrib><creatorcontrib>Johnston, Eric D.</creatorcontrib><creatorcontrib>Allen, Mark G.</creatorcontrib><creatorcontrib>Pikul, James H.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Yichao</au><au>Ren, Muqing</au><au>Sun, Anqian</au><au>Johnston, Eric D.</au><au>Allen, Mark G.</au><au>Pikul, James H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stretchable Metal‐Air Batteries Through Sliding Electrodes</atitle><jtitle>Advanced functional materials</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>34</volume><issue>28</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Soft robots and wearable technologies benefit significantly from stretchable batteries, yet the rigid nature of high‐capacity electrodes creates large trade‐offs in battery performance and stretchability. This study introduces a new approach for realizing stretchable batteries by allowing the electrodes to slide along a stretchable electrolyte. When the sliding‐electrodes battery is stretched, the forces are transmitted through the hydrogel electrolyte and elastomeric enclosure, while the rigid electrodes slide relative to the hydrogel to maintain interfacial contact. The sliding‐electrodes approach allows 100% of the unstretched battery area to be covered by thick electrodes so that the battery areal capacity and power are improved by up to 10X of prior stretchable designs. Three metal‐air batteries achieve areal capacities of up to 104 mWh cm−2. Further mechanical testing, electrochemical characterization, and integration into soft robotic systems demonstrate the potential of these stretchable batteries in practical applications. The sliding‐electrodes battery can stably power multiple servo motors and sensing circuits under stretching, twisting, bending, and after impact. This research introduces a method for realizing stretchable batteries whereby the electrodes slide along a stretchable electrolyte. The design allows thick and rigid electrodes to cover the entire area of the unstretched battery which enhances areal capacity and power. The stretchable metal‐air batteries power soft robots and actuators while being stretched, twisted, and hammered.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202314783</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7018-2925</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-07, Vol.34 (28), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_3077632468
source Wiley Online Library Journals Frontfile Complete
subjects Elastomers
Electrochemical analysis
Electrodes
Electrolytes
Hydrogels
Mechanical properties
Mechanical tests
Metal air batteries
Servomotors
Sliding
soft robotics
Stretchability
stretchable batteries
Wearable technology
wearables
title Stretchable Metal‐Air Batteries Through Sliding Electrodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A14%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stretchable%20Metal%E2%80%90Air%20Batteries%20Through%20Sliding%20Electrodes&rft.jtitle=Advanced%20functional%20materials&rft.au=Shi,%20Yichao&rft.date=2024-07-01&rft.volume=34&rft.issue=28&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202314783&rft_dat=%3Cproquest_cross%3E3077632468%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3077632468&rft_id=info:pmid/&rfr_iscdi=true