Unified Approach for Hedging Impermanent Loss of Liquidity Provision

We develop static and dynamic approaches for hedging of the impermanent loss (IL) of liquidity provision (LP) staked at Decentralised Exchanges (DEXes) which employ Uniswap V2 and V3 protocols. We provide detailed definitions and formulas for computing the IL to unify different definitions occurring...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-07
Hauptverfasser: Lipton, Alexander, Lucic, Vladimir, Sepp, Artur
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Lipton, Alexander
Lucic, Vladimir
Sepp, Artur
description We develop static and dynamic approaches for hedging of the impermanent loss (IL) of liquidity provision (LP) staked at Decentralised Exchanges (DEXes) which employ Uniswap V2 and V3 protocols. We provide detailed definitions and formulas for computing the IL to unify different definitions occurring in the existing literature. We show that the IL can be seen a contingent claim with a non-linear payoff for a fixed maturity date. Thus, we introduce the contingent claim termed as IL protection claim which delivers the negative of IL payoff at the maturity date. We apply arbitrage-based methods for valuation and risk management of this claim. First, we develop the static model-independent replication method for the valuation of IL protection claim using traded European vanilla call and put options. We extend and generalize an existing method to show that the IL protection claim can be hedged perfectly with options if there is a liquid options market. Second, we develop the dynamic model-based approach for the valuation and hedging of IL protection claims under a risk-neutral measure. We derive analytic valuation formulas using a wide class of price dynamics for which the characteristic function is available under the risk-neutral measure. As base cases, we derive analytic valuation formulas for IL protection claim under the Black-Scholes-Merton model and the log-normal stochastic volatility model. We finally discuss estimation of risk-reward of LP staking using our results.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3077525337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3077525337</sourcerecordid><originalsourceid>FETCH-proquest_journals_30775253373</originalsourceid><addsrcrecordid>eNqNjLsKwjAUQIMgWLT_cMG5EHMb4yo-qNDBQedSbFJvsUmbtIJ_bwc_wOkM53BmLBKIm2SXCrFgcQgN51xslZASI3a8WzKkK9h3nXfl4wnGech0VZOt4dJ22rel1XaA3IUAzkBO_UgVDR-4evemQM6u2NyUr6DjH5dsfT7dDlkyLftRh6Fo3OjtpArkSkkhERX-V30BLaw6iQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3077525337</pqid></control><display><type>article</type><title>Unified Approach for Hedging Impermanent Loss of Liquidity Provision</title><source>Free E- Journals</source><creator>Lipton, Alexander ; Lucic, Vladimir ; Sepp, Artur</creator><creatorcontrib>Lipton, Alexander ; Lucic, Vladimir ; Sepp, Artur</creatorcontrib><description>We develop static and dynamic approaches for hedging of the impermanent loss (IL) of liquidity provision (LP) staked at Decentralised Exchanges (DEXes) which employ Uniswap V2 and V3 protocols. We provide detailed definitions and formulas for computing the IL to unify different definitions occurring in the existing literature. We show that the IL can be seen a contingent claim with a non-linear payoff for a fixed maturity date. Thus, we introduce the contingent claim termed as IL protection claim which delivers the negative of IL payoff at the maturity date. We apply arbitrage-based methods for valuation and risk management of this claim. First, we develop the static model-independent replication method for the valuation of IL protection claim using traded European vanilla call and put options. We extend and generalize an existing method to show that the IL protection claim can be hedged perfectly with options if there is a liquid options market. Second, we develop the dynamic model-based approach for the valuation and hedging of IL protection claims under a risk-neutral measure. We derive analytic valuation formulas using a wide class of price dynamics for which the characteristic function is available under the risk-neutral measure. As base cases, we derive analytic valuation formulas for IL protection claim under the Black-Scholes-Merton model and the log-normal stochastic volatility model. We finally discuss estimation of risk-reward of LP staking using our results.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Characteristic functions ; Dynamic models ; Hedging ; Liquidity ; Options markets ; Put &amp; call options ; Risk management ; Staking ; Static models ; Stochastic models ; Valuation</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Lipton, Alexander</creatorcontrib><creatorcontrib>Lucic, Vladimir</creatorcontrib><creatorcontrib>Sepp, Artur</creatorcontrib><title>Unified Approach for Hedging Impermanent Loss of Liquidity Provision</title><title>arXiv.org</title><description>We develop static and dynamic approaches for hedging of the impermanent loss (IL) of liquidity provision (LP) staked at Decentralised Exchanges (DEXes) which employ Uniswap V2 and V3 protocols. We provide detailed definitions and formulas for computing the IL to unify different definitions occurring in the existing literature. We show that the IL can be seen a contingent claim with a non-linear payoff for a fixed maturity date. Thus, we introduce the contingent claim termed as IL protection claim which delivers the negative of IL payoff at the maturity date. We apply arbitrage-based methods for valuation and risk management of this claim. First, we develop the static model-independent replication method for the valuation of IL protection claim using traded European vanilla call and put options. We extend and generalize an existing method to show that the IL protection claim can be hedged perfectly with options if there is a liquid options market. Second, we develop the dynamic model-based approach for the valuation and hedging of IL protection claims under a risk-neutral measure. We derive analytic valuation formulas using a wide class of price dynamics for which the characteristic function is available under the risk-neutral measure. As base cases, we derive analytic valuation formulas for IL protection claim under the Black-Scholes-Merton model and the log-normal stochastic volatility model. We finally discuss estimation of risk-reward of LP staking using our results.</description><subject>Characteristic functions</subject><subject>Dynamic models</subject><subject>Hedging</subject><subject>Liquidity</subject><subject>Options markets</subject><subject>Put &amp; call options</subject><subject>Risk management</subject><subject>Staking</subject><subject>Static models</subject><subject>Stochastic models</subject><subject>Valuation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjLsKwjAUQIMgWLT_cMG5EHMb4yo-qNDBQedSbFJvsUmbtIJ_bwc_wOkM53BmLBKIm2SXCrFgcQgN51xslZASI3a8WzKkK9h3nXfl4wnGech0VZOt4dJ22rel1XaA3IUAzkBO_UgVDR-4evemQM6u2NyUr6DjH5dsfT7dDlkyLftRh6Fo3OjtpArkSkkhERX-V30BLaw6iQ</recordid><startdate>20240706</startdate><enddate>20240706</enddate><creator>Lipton, Alexander</creator><creator>Lucic, Vladimir</creator><creator>Sepp, Artur</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240706</creationdate><title>Unified Approach for Hedging Impermanent Loss of Liquidity Provision</title><author>Lipton, Alexander ; Lucic, Vladimir ; Sepp, Artur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30775253373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Characteristic functions</topic><topic>Dynamic models</topic><topic>Hedging</topic><topic>Liquidity</topic><topic>Options markets</topic><topic>Put &amp; call options</topic><topic>Risk management</topic><topic>Staking</topic><topic>Static models</topic><topic>Stochastic models</topic><topic>Valuation</topic><toplevel>online_resources</toplevel><creatorcontrib>Lipton, Alexander</creatorcontrib><creatorcontrib>Lucic, Vladimir</creatorcontrib><creatorcontrib>Sepp, Artur</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lipton, Alexander</au><au>Lucic, Vladimir</au><au>Sepp, Artur</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Unified Approach for Hedging Impermanent Loss of Liquidity Provision</atitle><jtitle>arXiv.org</jtitle><date>2024-07-06</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We develop static and dynamic approaches for hedging of the impermanent loss (IL) of liquidity provision (LP) staked at Decentralised Exchanges (DEXes) which employ Uniswap V2 and V3 protocols. We provide detailed definitions and formulas for computing the IL to unify different definitions occurring in the existing literature. We show that the IL can be seen a contingent claim with a non-linear payoff for a fixed maturity date. Thus, we introduce the contingent claim termed as IL protection claim which delivers the negative of IL payoff at the maturity date. We apply arbitrage-based methods for valuation and risk management of this claim. First, we develop the static model-independent replication method for the valuation of IL protection claim using traded European vanilla call and put options. We extend and generalize an existing method to show that the IL protection claim can be hedged perfectly with options if there is a liquid options market. Second, we develop the dynamic model-based approach for the valuation and hedging of IL protection claims under a risk-neutral measure. We derive analytic valuation formulas using a wide class of price dynamics for which the characteristic function is available under the risk-neutral measure. As base cases, we derive analytic valuation formulas for IL protection claim under the Black-Scholes-Merton model and the log-normal stochastic volatility model. We finally discuss estimation of risk-reward of LP staking using our results.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_3077525337
source Free E- Journals
subjects Characteristic functions
Dynamic models
Hedging
Liquidity
Options markets
Put & call options
Risk management
Staking
Static models
Stochastic models
Valuation
title Unified Approach for Hedging Impermanent Loss of Liquidity Provision
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A02%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Unified%20Approach%20for%20Hedging%20Impermanent%20Loss%20of%20Liquidity%20Provision&rft.jtitle=arXiv.org&rft.au=Lipton,%20Alexander&rft.date=2024-07-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3077525337%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3077525337&rft_id=info:pmid/&rfr_iscdi=true