Braiding on complex oriented Soergel bimodules
In this note, we study U(n) Soergel bimodules in the context of stable homotopy theory. We define the \((\infty, 1)\)-category \(\mathrm{SBim}_E(n)\) of \(E\)-valued U(n) Soergel bimodules, where \(E\) is a connective \(\mathbb{E}_\infty\)-ring spectrum, and assemble them into a monoidal locally add...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-07 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Yu Leon Liu |
description | In this note, we study U(n) Soergel bimodules in the context of stable homotopy theory. We define the \((\infty, 1)\)-category \(\mathrm{SBim}_E(n)\) of \(E\)-valued U(n) Soergel bimodules, where \(E\) is a connective \(\mathbb{E}_\infty\)-ring spectrum, and assemble them into a monoidal locally additive \((\infty, 2)\)-category \(\mathrm{SBim}_E\). When \(E\) has a complex orientation, we then construct a braiding, i.e. an \(\mathbb{E}_2\)-algebra structure, on the universal locally stable \((\infty, 2)\)-category \(\mathrm{K}^b_{\mathrm{loc}}(\mathrm{SBim}_E)\) associated to \(\mathrm{SBim}_E\). Along the way, we also prove spectral analogs of standard splittings of Soergel bimodules. This is a topological generalization of the type \(A\) Soergel bimodule theory developed in a previous paper. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3077525207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3077525207</sourcerecordid><originalsourceid>FETCH-proquest_journals_30775252073</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOFDECzadwg4V-LFGGdFcde91OYsKWmuJg34-Dr4AE7_8P0zKFCpbXXYIS6gTKmXUuLeoNaqgM0xNs660AkOouVh9PQWHB2Fiay4McWOvHi4gW32lFYwfzY-UfnrEtaX8_10rcbIr0xpqnvOMXypVtIYjRqlUf9dHwbuMoM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3077525207</pqid></control><display><type>article</type><title>Braiding on complex oriented Soergel bimodules</title><source>Free E- Journals</source><creator>Yu Leon Liu</creator><creatorcontrib>Yu Leon Liu</creatorcontrib><description>In this note, we study U(n) Soergel bimodules in the context of stable homotopy theory. We define the \((\infty, 1)\)-category \(\mathrm{SBim}_E(n)\) of \(E\)-valued U(n) Soergel bimodules, where \(E\) is a connective \(\mathbb{E}_\infty\)-ring spectrum, and assemble them into a monoidal locally additive \((\infty, 2)\)-category \(\mathrm{SBim}_E\). When \(E\) has a complex orientation, we then construct a braiding, i.e. an \(\mathbb{E}_2\)-algebra structure, on the universal locally stable \((\infty, 2)\)-category \(\mathrm{K}^b_{\mathrm{loc}}(\mathrm{SBim}_E)\) associated to \(\mathrm{SBim}_E\). Along the way, we also prove spectral analogs of standard splittings of Soergel bimodules. This is a topological generalization of the type \(A\) Soergel bimodule theory developed in a previous paper.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Braiding ; Homotopy theory</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Yu Leon Liu</creatorcontrib><title>Braiding on complex oriented Soergel bimodules</title><title>arXiv.org</title><description>In this note, we study U(n) Soergel bimodules in the context of stable homotopy theory. We define the \((\infty, 1)\)-category \(\mathrm{SBim}_E(n)\) of \(E\)-valued U(n) Soergel bimodules, where \(E\) is a connective \(\mathbb{E}_\infty\)-ring spectrum, and assemble them into a monoidal locally additive \((\infty, 2)\)-category \(\mathrm{SBim}_E\). When \(E\) has a complex orientation, we then construct a braiding, i.e. an \(\mathbb{E}_2\)-algebra structure, on the universal locally stable \((\infty, 2)\)-category \(\mathrm{K}^b_{\mathrm{loc}}(\mathrm{SBim}_E)\) associated to \(\mathrm{SBim}_E\). Along the way, we also prove spectral analogs of standard splittings of Soergel bimodules. This is a topological generalization of the type \(A\) Soergel bimodule theory developed in a previous paper.</description><subject>Braiding</subject><subject>Homotopy theory</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyrEKwjAQgOFDECzadwg4V-LFGGdFcde91OYsKWmuJg34-Dr4AE7_8P0zKFCpbXXYIS6gTKmXUuLeoNaqgM0xNs660AkOouVh9PQWHB2Fiay4McWOvHi4gW32lFYwfzY-UfnrEtaX8_10rcbIr0xpqnvOMXypVtIYjRqlUf9dHwbuMoM</recordid><startdate>20240705</startdate><enddate>20240705</enddate><creator>Yu Leon Liu</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240705</creationdate><title>Braiding on complex oriented Soergel bimodules</title><author>Yu Leon Liu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30775252073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Braiding</topic><topic>Homotopy theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Yu Leon Liu</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu Leon Liu</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Braiding on complex oriented Soergel bimodules</atitle><jtitle>arXiv.org</jtitle><date>2024-07-05</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In this note, we study U(n) Soergel bimodules in the context of stable homotopy theory. We define the \((\infty, 1)\)-category \(\mathrm{SBim}_E(n)\) of \(E\)-valued U(n) Soergel bimodules, where \(E\) is a connective \(\mathbb{E}_\infty\)-ring spectrum, and assemble them into a monoidal locally additive \((\infty, 2)\)-category \(\mathrm{SBim}_E\). When \(E\) has a complex orientation, we then construct a braiding, i.e. an \(\mathbb{E}_2\)-algebra structure, on the universal locally stable \((\infty, 2)\)-category \(\mathrm{K}^b_{\mathrm{loc}}(\mathrm{SBim}_E)\) associated to \(\mathrm{SBim}_E\). Along the way, we also prove spectral analogs of standard splittings of Soergel bimodules. This is a topological generalization of the type \(A\) Soergel bimodule theory developed in a previous paper.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3077525207 |
source | Free E- Journals |
subjects | Braiding Homotopy theory |
title | Braiding on complex oriented Soergel bimodules |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A40%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Braiding%20on%20complex%20oriented%20Soergel%20bimodules&rft.jtitle=arXiv.org&rft.au=Yu%20Leon%20Liu&rft.date=2024-07-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3077525207%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3077525207&rft_id=info:pmid/&rfr_iscdi=true |