Perception data fusion-based computation offloading in cooperative vehicle infrastructure systems
With the rapid advancement of intelligent transportation systems, cooperative vehicle infrastructure systems emerge as a vital frontier for development. Real-time mutual fusion of perception data is a crucial technology for ensuring the security of ITS systems. However, the computation-intensive nat...
Gespeichert in:
Veröffentlicht in: | The Journal of supercomputing 2024-08, Vol.80 (12), p.17688-17710 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17710 |
---|---|
container_issue | 12 |
container_start_page | 17688 |
container_title | The Journal of supercomputing |
container_volume | 80 |
creator | Wu, Ruizhi Li, Bo Hou, Peng Hou, Fen |
description | With the rapid advancement of intelligent transportation systems, cooperative vehicle infrastructure systems emerge as a vital frontier for development. Real-time mutual fusion of perception data is a crucial technology for ensuring the security of ITS systems. However, the computation-intensive nature of perception data fusion poses a significant challenge in terms of computing resource allocation and scheduling. In this paper, we propose a vehicle-road cooperative network that facilitates computation offloading during the real-time perception data fusion process. We present an architecture that enables users to generate tasks and offload computations, and we formulate an integer nonlinear programming problem within this framework. Considering the dynamic, random, and time-varying characteristics of cooperative vehicle infrastructure systems, we introduced the Deep Deterministic Policy Gradient (DDPG) algorithm for perception fusion computing offloading (DDPG-PFCO). Through extensive experiments conducted on a real map, experimental results show that the proposed algorithm outperforms other comparison algorithms, exhibiting significant improvements in performance. |
doi_str_mv | 10.1007/s11227-024-06145-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3077092726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3077092726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-599d1a3b2a98054f8b0d53bb52e89966fabba98ff6bae5aeb40c1150376ddba53</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC5-gk2Wx2j1L8goIe9ByS3Und0m7WJFvovze2gjdPM8z7MfAQcs3glgGou8gY54oCLylUrJSUn5AZk0pQKOvylMyg4UBrWfJzchHjGgBKocSMmDcMLY6p90PRmWQKN8W8U2sidkXrt-OUzEH1zm286fphVfRDVvyIISs7LHb42bcbzGcXTExhatMUsIj7mHAbL8mZM5uIV79zTj4eH94Xz3T5-vSyuF_SlitIVDZNx4yw3DQ1yNLVFjoprJUc66apKmeszZJzlTUoDdoSWsYkCFV1nTVSzMnNsXcM_mvCmPTaT2HIL7UApTIAxavs4kdXG3yMAZ0eQ781Ya8Z6B-U-ohSZ5T6gFLzHBLHUMzmYYXhr_qf1DdcjHlw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3077092726</pqid></control><display><type>article</type><title>Perception data fusion-based computation offloading in cooperative vehicle infrastructure systems</title><source>Springer Nature - Complete Springer Journals</source><creator>Wu, Ruizhi ; Li, Bo ; Hou, Peng ; Hou, Fen</creator><creatorcontrib>Wu, Ruizhi ; Li, Bo ; Hou, Peng ; Hou, Fen</creatorcontrib><description>With the rapid advancement of intelligent transportation systems, cooperative vehicle infrastructure systems emerge as a vital frontier for development. Real-time mutual fusion of perception data is a crucial technology for ensuring the security of ITS systems. However, the computation-intensive nature of perception data fusion poses a significant challenge in terms of computing resource allocation and scheduling. In this paper, we propose a vehicle-road cooperative network that facilitates computation offloading during the real-time perception data fusion process. We present an architecture that enables users to generate tasks and offload computations, and we formulate an integer nonlinear programming problem within this framework. Considering the dynamic, random, and time-varying characteristics of cooperative vehicle infrastructure systems, we introduced the Deep Deterministic Policy Gradient (DDPG) algorithm for perception fusion computing offloading (DDPG-PFCO). Through extensive experiments conducted on a real map, experimental results show that the proposed algorithm outperforms other comparison algorithms, exhibiting significant improvements in performance.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-024-06145-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Compilers ; Computation offloading ; Computer Science ; Data integration ; Infrastructure ; Intelligent transportation systems ; Interpreters ; Nonlinear programming ; Perception ; Processor Architectures ; Programming Languages ; Real time ; Resource allocation ; Resource scheduling</subject><ispartof>The Journal of supercomputing, 2024-08, Vol.80 (12), p.17688-17710</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-599d1a3b2a98054f8b0d53bb52e89966fabba98ff6bae5aeb40c1150376ddba53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11227-024-06145-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11227-024-06145-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wu, Ruizhi</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Hou, Peng</creatorcontrib><creatorcontrib>Hou, Fen</creatorcontrib><title>Perception data fusion-based computation offloading in cooperative vehicle infrastructure systems</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>With the rapid advancement of intelligent transportation systems, cooperative vehicle infrastructure systems emerge as a vital frontier for development. Real-time mutual fusion of perception data is a crucial technology for ensuring the security of ITS systems. However, the computation-intensive nature of perception data fusion poses a significant challenge in terms of computing resource allocation and scheduling. In this paper, we propose a vehicle-road cooperative network that facilitates computation offloading during the real-time perception data fusion process. We present an architecture that enables users to generate tasks and offload computations, and we formulate an integer nonlinear programming problem within this framework. Considering the dynamic, random, and time-varying characteristics of cooperative vehicle infrastructure systems, we introduced the Deep Deterministic Policy Gradient (DDPG) algorithm for perception fusion computing offloading (DDPG-PFCO). Through extensive experiments conducted on a real map, experimental results show that the proposed algorithm outperforms other comparison algorithms, exhibiting significant improvements in performance.</description><subject>Algorithms</subject><subject>Compilers</subject><subject>Computation offloading</subject><subject>Computer Science</subject><subject>Data integration</subject><subject>Infrastructure</subject><subject>Intelligent transportation systems</subject><subject>Interpreters</subject><subject>Nonlinear programming</subject><subject>Perception</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><subject>Real time</subject><subject>Resource allocation</subject><subject>Resource scheduling</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOC5-gk2Wx2j1L8goIe9ByS3Und0m7WJFvovze2gjdPM8z7MfAQcs3glgGou8gY54oCLylUrJSUn5AZk0pQKOvylMyg4UBrWfJzchHjGgBKocSMmDcMLY6p90PRmWQKN8W8U2sidkXrt-OUzEH1zm286fphVfRDVvyIISs7LHb42bcbzGcXTExhatMUsIj7mHAbL8mZM5uIV79zTj4eH94Xz3T5-vSyuF_SlitIVDZNx4yw3DQ1yNLVFjoprJUc66apKmeszZJzlTUoDdoSWsYkCFV1nTVSzMnNsXcM_mvCmPTaT2HIL7UApTIAxavs4kdXG3yMAZ0eQ781Ya8Z6B-U-ohSZ5T6gFLzHBLHUMzmYYXhr_qf1DdcjHlw</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Wu, Ruizhi</creator><creator>Li, Bo</creator><creator>Hou, Peng</creator><creator>Hou, Fen</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240801</creationdate><title>Perception data fusion-based computation offloading in cooperative vehicle infrastructure systems</title><author>Wu, Ruizhi ; Li, Bo ; Hou, Peng ; Hou, Fen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-599d1a3b2a98054f8b0d53bb52e89966fabba98ff6bae5aeb40c1150376ddba53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Compilers</topic><topic>Computation offloading</topic><topic>Computer Science</topic><topic>Data integration</topic><topic>Infrastructure</topic><topic>Intelligent transportation systems</topic><topic>Interpreters</topic><topic>Nonlinear programming</topic><topic>Perception</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><topic>Real time</topic><topic>Resource allocation</topic><topic>Resource scheduling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Ruizhi</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Hou, Peng</creatorcontrib><creatorcontrib>Hou, Fen</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Ruizhi</au><au>Li, Bo</au><au>Hou, Peng</au><au>Hou, Fen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Perception data fusion-based computation offloading in cooperative vehicle infrastructure systems</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>80</volume><issue>12</issue><spage>17688</spage><epage>17710</epage><pages>17688-17710</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>With the rapid advancement of intelligent transportation systems, cooperative vehicle infrastructure systems emerge as a vital frontier for development. Real-time mutual fusion of perception data is a crucial technology for ensuring the security of ITS systems. However, the computation-intensive nature of perception data fusion poses a significant challenge in terms of computing resource allocation and scheduling. In this paper, we propose a vehicle-road cooperative network that facilitates computation offloading during the real-time perception data fusion process. We present an architecture that enables users to generate tasks and offload computations, and we formulate an integer nonlinear programming problem within this framework. Considering the dynamic, random, and time-varying characteristics of cooperative vehicle infrastructure systems, we introduced the Deep Deterministic Policy Gradient (DDPG) algorithm for perception fusion computing offloading (DDPG-PFCO). Through extensive experiments conducted on a real map, experimental results show that the proposed algorithm outperforms other comparison algorithms, exhibiting significant improvements in performance.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-024-06145-2</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-8542 |
ispartof | The Journal of supercomputing, 2024-08, Vol.80 (12), p.17688-17710 |
issn | 0920-8542 1573-0484 |
language | eng |
recordid | cdi_proquest_journals_3077092726 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Compilers Computation offloading Computer Science Data integration Infrastructure Intelligent transportation systems Interpreters Nonlinear programming Perception Processor Architectures Programming Languages Real time Resource allocation Resource scheduling |
title | Perception data fusion-based computation offloading in cooperative vehicle infrastructure systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T17%3A44%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Perception%20data%20fusion-based%20computation%20offloading%20in%20cooperative%20vehicle%20infrastructure%20systems&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Wu,%20Ruizhi&rft.date=2024-08-01&rft.volume=80&rft.issue=12&rft.spage=17688&rft.epage=17710&rft.pages=17688-17710&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-024-06145-2&rft_dat=%3Cproquest_cross%3E3077092726%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3077092726&rft_id=info:pmid/&rfr_iscdi=true |