Finite difference method for the Riesz space distributed-order advection–diffusion equation with delay in 2D: convergence and stability

In this paper, we propose numerical methods for the Riesz space distributed-order advection–diffusion equation with delay in 2D. We utilize the fractional backward differential formula method of second order (FBDF2), and weighted and shifted Grünwald difference (WSGD) operators to approximate the Ri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing 2024, Vol.80 (12), p.16887-16917
Hauptverfasser: Saedshoar Heris, Mahdi, Javidi, Mohammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16917
container_issue 12
container_start_page 16887
container_title The Journal of supercomputing
container_volume 80
creator Saedshoar Heris, Mahdi
Javidi, Mohammad
description In this paper, we propose numerical methods for the Riesz space distributed-order advection–diffusion equation with delay in 2D. We utilize the fractional backward differential formula method of second order (FBDF2), and weighted and shifted Grünwald difference (WSGD) operators to approximate the Riesz fractional derivative and develop the finite difference method for the RFADED. It has been shown that the obtained schemes are unconditionally stable and convergent with the accuracy of O ( h 2 + k 2 + κ 2 + σ 2 + ρ 2 ) , where h , k and κ are space step for x , y and time step, respectively. Also, numerical examples are constructed to demonstrate the effectiveness of the numerical methods, and the results are found to be in excellent agreement with analytic exact solution.
doi_str_mv 10.1007/s11227-024-06112-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3077092721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3077092721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-aab0f2b39bee22f213956f975a215b9cf8ce839286154727e807fb89a7d1e11a3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4CrgOprLTDPjTqpVoSCIrkNm5qRNaTNtkqmtK7eufUOfxJlWcOfq_Bz-C3wInTN6ySiVV4ExziWhPCF00GqyOUA9lkpBaJIlh6hHc05Jlib8GJ2EMKOUJkKKHvocWWcj4MoaAx5cCXgBcVpX2NQexyngZwvhHYelLjtXiN4WTYSK1L4Cj3W1hjLa2n1_fHUdTWg1hlWjuyd-s3GKK5jrLbYO89trXNZuDX6yW9KuwiHqws5t3J6iI6PnAc5-bx-9ju5ehg9k_HT_OLwZk5JLGonWBTW8EHkBwLnhTOTpwOQy1ZylRV6arIRM5DwbsDSRXEJGpSmyXMuKAWNa9NHFvnfp61UDIapZ3XjXTipBpWxByba0j_jeVfo6BA9GLb1daL9VjKoOudojVy1ytUOuNm1I7EOhNbsJ-L_qf1I_cvqH4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3077092721</pqid></control><display><type>article</type><title>Finite difference method for the Riesz space distributed-order advection–diffusion equation with delay in 2D: convergence and stability</title><source>SpringerLink Journals - AutoHoldings</source><creator>Saedshoar Heris, Mahdi ; Javidi, Mohammad</creator><creatorcontrib>Saedshoar Heris, Mahdi ; Javidi, Mohammad</creatorcontrib><description>In this paper, we propose numerical methods for the Riesz space distributed-order advection–diffusion equation with delay in 2D. We utilize the fractional backward differential formula method of second order (FBDF2), and weighted and shifted Grünwald difference (WSGD) operators to approximate the Riesz fractional derivative and develop the finite difference method for the RFADED. It has been shown that the obtained schemes are unconditionally stable and convergent with the accuracy of O ( h 2 + k 2 + κ 2 + σ 2 + ρ 2 ) , where h , k and κ are space step for x , y and time step, respectively. Also, numerical examples are constructed to demonstrate the effectiveness of the numerical methods, and the results are found to be in excellent agreement with analytic exact solution.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-024-06112-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Advection ; Advection-diffusion equation ; Compilers ; Computer Science ; Exact solutions ; Finite difference method ; Interpreters ; Mathematical analysis ; Numerical methods ; Operators (mathematics) ; Processor Architectures ; Programming Languages</subject><ispartof>The Journal of supercomputing, 2024, Vol.80 (12), p.16887-16917</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-aab0f2b39bee22f213956f975a215b9cf8ce839286154727e807fb89a7d1e11a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11227-024-06112-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11227-024-06112-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Saedshoar Heris, Mahdi</creatorcontrib><creatorcontrib>Javidi, Mohammad</creatorcontrib><title>Finite difference method for the Riesz space distributed-order advection–diffusion equation with delay in 2D: convergence and stability</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>In this paper, we propose numerical methods for the Riesz space distributed-order advection–diffusion equation with delay in 2D. We utilize the fractional backward differential formula method of second order (FBDF2), and weighted and shifted Grünwald difference (WSGD) operators to approximate the Riesz fractional derivative and develop the finite difference method for the RFADED. It has been shown that the obtained schemes are unconditionally stable and convergent with the accuracy of O ( h 2 + k 2 + κ 2 + σ 2 + ρ 2 ) , where h , k and κ are space step for x , y and time step, respectively. Also, numerical examples are constructed to demonstrate the effectiveness of the numerical methods, and the results are found to be in excellent agreement with analytic exact solution.</description><subject>Advection</subject><subject>Advection-diffusion equation</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Exact solutions</subject><subject>Finite difference method</subject><subject>Interpreters</subject><subject>Mathematical analysis</subject><subject>Numerical methods</subject><subject>Operators (mathematics)</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsv4CrgOprLTDPjTqpVoSCIrkNm5qRNaTNtkqmtK7eufUOfxJlWcOfq_Bz-C3wInTN6ySiVV4ExziWhPCF00GqyOUA9lkpBaJIlh6hHc05Jlib8GJ2EMKOUJkKKHvocWWcj4MoaAx5cCXgBcVpX2NQexyngZwvhHYelLjtXiN4WTYSK1L4Cj3W1hjLa2n1_fHUdTWg1hlWjuyd-s3GKK5jrLbYO89trXNZuDX6yW9KuwiHqws5t3J6iI6PnAc5-bx-9ju5ehg9k_HT_OLwZk5JLGonWBTW8EHkBwLnhTOTpwOQy1ZylRV6arIRM5DwbsDSRXEJGpSmyXMuKAWNa9NHFvnfp61UDIapZ3XjXTipBpWxByba0j_jeVfo6BA9GLb1daL9VjKoOudojVy1ytUOuNm1I7EOhNbsJ-L_qf1I_cvqH4g</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Saedshoar Heris, Mahdi</creator><creator>Javidi, Mohammad</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>Finite difference method for the Riesz space distributed-order advection–diffusion equation with delay in 2D: convergence and stability</title><author>Saedshoar Heris, Mahdi ; Javidi, Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-aab0f2b39bee22f213956f975a215b9cf8ce839286154727e807fb89a7d1e11a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Advection</topic><topic>Advection-diffusion equation</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Exact solutions</topic><topic>Finite difference method</topic><topic>Interpreters</topic><topic>Mathematical analysis</topic><topic>Numerical methods</topic><topic>Operators (mathematics)</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saedshoar Heris, Mahdi</creatorcontrib><creatorcontrib>Javidi, Mohammad</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saedshoar Heris, Mahdi</au><au>Javidi, Mohammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite difference method for the Riesz space distributed-order advection–diffusion equation with delay in 2D: convergence and stability</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2024</date><risdate>2024</risdate><volume>80</volume><issue>12</issue><spage>16887</spage><epage>16917</epage><pages>16887-16917</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>In this paper, we propose numerical methods for the Riesz space distributed-order advection–diffusion equation with delay in 2D. We utilize the fractional backward differential formula method of second order (FBDF2), and weighted and shifted Grünwald difference (WSGD) operators to approximate the Riesz fractional derivative and develop the finite difference method for the RFADED. It has been shown that the obtained schemes are unconditionally stable and convergent with the accuracy of O ( h 2 + k 2 + κ 2 + σ 2 + ρ 2 ) , where h , k and κ are space step for x , y and time step, respectively. Also, numerical examples are constructed to demonstrate the effectiveness of the numerical methods, and the results are found to be in excellent agreement with analytic exact solution.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-024-06112-x</doi><tpages>31</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0920-8542
ispartof The Journal of supercomputing, 2024, Vol.80 (12), p.16887-16917
issn 0920-8542
1573-0484
language eng
recordid cdi_proquest_journals_3077092721
source SpringerLink Journals - AutoHoldings
subjects Advection
Advection-diffusion equation
Compilers
Computer Science
Exact solutions
Finite difference method
Interpreters
Mathematical analysis
Numerical methods
Operators (mathematics)
Processor Architectures
Programming Languages
title Finite difference method for the Riesz space distributed-order advection–diffusion equation with delay in 2D: convergence and stability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A25%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20difference%20method%20for%20the%20Riesz%20space%20distributed-order%20advection%E2%80%93diffusion%20equation%20with%20delay%20in%202D:%20convergence%20and%20stability&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Saedshoar%20Heris,%20Mahdi&rft.date=2024&rft.volume=80&rft.issue=12&rft.spage=16887&rft.epage=16917&rft.pages=16887-16917&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-024-06112-x&rft_dat=%3Cproquest_cross%3E3077092721%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3077092721&rft_id=info:pmid/&rfr_iscdi=true