Genetic connectivity is maintained in two insect pollinators across a human‐altered landscape

Population genetics is a valuable tool for assessing the impact of human‐altered landscapes on genetic connectivity in various species. However, when applied to insects, challenges arise due to potentially large effective population sizes (Ne), high dispersal capacities and the recency of anthropoge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Insect conservation and diversity 2024-07, Vol.17 (4), p.601-615
Hauptverfasser: Schleimer, Anna, Wittische, Julian, Luttringer, Amanda, Rupprecht, Christina, Andrási, Bálint, Ariey, Hinatea, Cruz, António, Gallego, Gil, Lippert, Stéphanie, Purnomo, Chanistya Ayu, Herrera‐Mesías, Fernanda, Eickermann, Michael, Kharrat‐Jarboui, Imen, Castelen, Lorenzo, Cantú‐Salazar, Lisette, Thissen, Dylan, Meimberg, Harald, Weigand, Alexander M., Frantz, Alain C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 615
container_issue 4
container_start_page 601
container_title Insect conservation and diversity
container_volume 17
creator Schleimer, Anna
Wittische, Julian
Luttringer, Amanda
Rupprecht, Christina
Andrási, Bálint
Ariey, Hinatea
Cruz, António
Gallego, Gil
Lippert, Stéphanie
Purnomo, Chanistya Ayu
Herrera‐Mesías, Fernanda
Eickermann, Michael
Kharrat‐Jarboui, Imen
Castelen, Lorenzo
Cantú‐Salazar, Lisette
Thissen, Dylan
Meimberg, Harald
Weigand, Alexander M.
Frantz, Alain C.
description Population genetics is a valuable tool for assessing the impact of human‐altered landscapes on genetic connectivity in various species. However, when applied to insects, challenges arise due to potentially large effective population sizes (Ne), high dispersal capacities and the recency of anthropogenic impacts. This study assessed the population genetic structure of two pollinators across a human‐altered landscape in Luxembourg. Samples from the ashy mining bee (Andrena cineraria, N = 201) and the greater bee fly (Bombylius major, N = 637) were genotyped at 25 microsatellite loci, including a genotyping‐by‐amplicon‐sequencing approach for A. cineraria. Despite high statistical power of FST > 0.002 in B. major and FST > 0.0025 in A. cineraria, no deviations from genetic homogeneity were detected. For both species, there was no evidence for isolation‐by‐distance or genetic clustering. Genetic homogeneity was most likely the result of high levels of gene flow that compensate for the effects of genetic drift. Estimates of Ne ranged between several thousand to tens of thousands, although precision was low. Simulations highlighted that genetic lag times can substantially affect our ability to detect recent (
doi_str_mv 10.1111/icad.12725
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3076954797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3076954797</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2965-670a572fd282a50952d854418c7bd1f4f551e4e4551d91a860c57b98b212503c3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsbnyDgTpiapMkkWUrVKhTcKLgLaZLBlGlmTFKlOx_BZ_RJTDvi0guXcxff_TsAnGM0wSWuvNF2ggkn7ACMMGekokyKw79avByDk5RWCNVI1mQE1NwFl72BpgvBmezffd5Cn-Ba-5BLOgt9gPmjK5IKAPuubX3QuYsJahO7VAS-btY6fH9-6Ta7WFpaHWwyunen4KjRbXJnvzoGz3e3T7P7avE4f5hdLypDZM2qmiPNOGksEUQzJBmxglGKheFLixvaMIYddbSIlViLGhnGl1IsCSYMTc10DC6GuX3s3jYuZbXqNjGUlWqKeC0Z5ZIX6nKg9ndH16g--rWOW4WR2hmodgaqvYEFxgP84Vu3_YdU5ZGboecHIUVz1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3076954797</pqid></control><display><type>article</type><title>Genetic connectivity is maintained in two insect pollinators across a human‐altered landscape</title><source>Access via Wiley Online Library</source><creator>Schleimer, Anna ; Wittische, Julian ; Luttringer, Amanda ; Rupprecht, Christina ; Andrási, Bálint ; Ariey, Hinatea ; Cruz, António ; Gallego, Gil ; Lippert, Stéphanie ; Purnomo, Chanistya Ayu ; Herrera‐Mesías, Fernanda ; Eickermann, Michael ; Kharrat‐Jarboui, Imen ; Castelen, Lorenzo ; Cantú‐Salazar, Lisette ; Thissen, Dylan ; Meimberg, Harald ; Weigand, Alexander M. ; Frantz, Alain C.</creator><creatorcontrib>Schleimer, Anna ; Wittische, Julian ; Luttringer, Amanda ; Rupprecht, Christina ; Andrási, Bálint ; Ariey, Hinatea ; Cruz, António ; Gallego, Gil ; Lippert, Stéphanie ; Purnomo, Chanistya Ayu ; Herrera‐Mesías, Fernanda ; Eickermann, Michael ; Kharrat‐Jarboui, Imen ; Castelen, Lorenzo ; Cantú‐Salazar, Lisette ; Thissen, Dylan ; Meimberg, Harald ; Weigand, Alexander M. ; Frantz, Alain C.</creatorcontrib><description>Population genetics is a valuable tool for assessing the impact of human‐altered landscapes on genetic connectivity in various species. However, when applied to insects, challenges arise due to potentially large effective population sizes (Ne), high dispersal capacities and the recency of anthropogenic impacts. This study assessed the population genetic structure of two pollinators across a human‐altered landscape in Luxembourg. Samples from the ashy mining bee (Andrena cineraria, N = 201) and the greater bee fly (Bombylius major, N = 637) were genotyped at 25 microsatellite loci, including a genotyping‐by‐amplicon‐sequencing approach for A. cineraria. Despite high statistical power of FST &gt; 0.002 in B. major and FST &gt; 0.0025 in A. cineraria, no deviations from genetic homogeneity were detected. For both species, there was no evidence for isolation‐by‐distance or genetic clustering. Genetic homogeneity was most likely the result of high levels of gene flow that compensate for the effects of genetic drift. Estimates of Ne ranged between several thousand to tens of thousands, although precision was low. Simulations highlighted that genetic lag times can substantially affect our ability to detect recent (&lt;50 generations) population differentiation when Ne is very large. Lag times were shorter with data from 25,000 simulated di‐allelic loci, but only when sample sizes remained high. Insect genetic studies should consider lag times due to large Ne and ensure sample size and markers offer adequate power to reject the null hypothesis of no landscape effect on genetic connectivity. More than 600 Bombylius major and 200 Andrena cineraria were sampled to study pollinator genetic connectivity across a human‐altered landscape in the heavily fragmented country of Luxembourg. No deviations from genetic homogeneity were detected, highlighting these species' abilities to maintain high genetic connectivity despite extensive land‐use changes. Simulations and power analyses were conducted to assess the impact of effective population size and migration rates on temporal lags to detect genetic differentiation, given the recency of urban development.</description><identifier>ISSN: 1752-458X</identifier><identifier>EISSN: 1752-4598</identifier><identifier>DOI: 10.1111/icad.12725</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Andrena cineraria ; Anthropogenic factors ; Bombylius major ; Gene flow ; Genetic drift ; Genetic structure ; Genotyping ; genotyping‐by‐amplicon‐sequencing ; lag time ; landscape genetics ; microsatellite loci ; Pollinators ; Population differentiation ; Population genetics ; Population studies ; power analysis</subject><ispartof>Insect conservation and diversity, 2024-07, Vol.17 (4), p.601-615</ispartof><rights>2024 The Authors. published by John Wiley &amp; Sons Ltd on behalf of Royal Entomological Society.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2965-670a572fd282a50952d854418c7bd1f4f551e4e4551d91a860c57b98b212503c3</cites><orcidid>0000-0001-6705-8598 ; 0000-0002-8723-2554 ; 0000-0003-1629-7649 ; 0000-0002-9798-5074 ; 0000-0001-8216-871X ; 0000-0002-9456-3001 ; 0000-0002-5481-7142 ; 0000-0002-2818-9322 ; 0000-0003-3704-902X ; 0000-0001-7587-6531 ; 0009-0005-6151-4114 ; 0000-0001-6696-2649 ; 0000-0001-6347-0278</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ficad.12725$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ficad.12725$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Schleimer, Anna</creatorcontrib><creatorcontrib>Wittische, Julian</creatorcontrib><creatorcontrib>Luttringer, Amanda</creatorcontrib><creatorcontrib>Rupprecht, Christina</creatorcontrib><creatorcontrib>Andrási, Bálint</creatorcontrib><creatorcontrib>Ariey, Hinatea</creatorcontrib><creatorcontrib>Cruz, António</creatorcontrib><creatorcontrib>Gallego, Gil</creatorcontrib><creatorcontrib>Lippert, Stéphanie</creatorcontrib><creatorcontrib>Purnomo, Chanistya Ayu</creatorcontrib><creatorcontrib>Herrera‐Mesías, Fernanda</creatorcontrib><creatorcontrib>Eickermann, Michael</creatorcontrib><creatorcontrib>Kharrat‐Jarboui, Imen</creatorcontrib><creatorcontrib>Castelen, Lorenzo</creatorcontrib><creatorcontrib>Cantú‐Salazar, Lisette</creatorcontrib><creatorcontrib>Thissen, Dylan</creatorcontrib><creatorcontrib>Meimberg, Harald</creatorcontrib><creatorcontrib>Weigand, Alexander M.</creatorcontrib><creatorcontrib>Frantz, Alain C.</creatorcontrib><title>Genetic connectivity is maintained in two insect pollinators across a human‐altered landscape</title><title>Insect conservation and diversity</title><description>Population genetics is a valuable tool for assessing the impact of human‐altered landscapes on genetic connectivity in various species. However, when applied to insects, challenges arise due to potentially large effective population sizes (Ne), high dispersal capacities and the recency of anthropogenic impacts. This study assessed the population genetic structure of two pollinators across a human‐altered landscape in Luxembourg. Samples from the ashy mining bee (Andrena cineraria, N = 201) and the greater bee fly (Bombylius major, N = 637) were genotyped at 25 microsatellite loci, including a genotyping‐by‐amplicon‐sequencing approach for A. cineraria. Despite high statistical power of FST &gt; 0.002 in B. major and FST &gt; 0.0025 in A. cineraria, no deviations from genetic homogeneity were detected. For both species, there was no evidence for isolation‐by‐distance or genetic clustering. Genetic homogeneity was most likely the result of high levels of gene flow that compensate for the effects of genetic drift. Estimates of Ne ranged between several thousand to tens of thousands, although precision was low. Simulations highlighted that genetic lag times can substantially affect our ability to detect recent (&lt;50 generations) population differentiation when Ne is very large. Lag times were shorter with data from 25,000 simulated di‐allelic loci, but only when sample sizes remained high. Insect genetic studies should consider lag times due to large Ne and ensure sample size and markers offer adequate power to reject the null hypothesis of no landscape effect on genetic connectivity. More than 600 Bombylius major and 200 Andrena cineraria were sampled to study pollinator genetic connectivity across a human‐altered landscape in the heavily fragmented country of Luxembourg. No deviations from genetic homogeneity were detected, highlighting these species' abilities to maintain high genetic connectivity despite extensive land‐use changes. Simulations and power analyses were conducted to assess the impact of effective population size and migration rates on temporal lags to detect genetic differentiation, given the recency of urban development.</description><subject>Andrena cineraria</subject><subject>Anthropogenic factors</subject><subject>Bombylius major</subject><subject>Gene flow</subject><subject>Genetic drift</subject><subject>Genetic structure</subject><subject>Genotyping</subject><subject>genotyping‐by‐amplicon‐sequencing</subject><subject>lag time</subject><subject>landscape genetics</subject><subject>microsatellite loci</subject><subject>Pollinators</subject><subject>Population differentiation</subject><subject>Population genetics</subject><subject>Population studies</subject><subject>power analysis</subject><issn>1752-458X</issn><issn>1752-4598</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9kM1KAzEUhYMoWKsbnyDgTpiapMkkWUrVKhTcKLgLaZLBlGlmTFKlOx_BZ_RJTDvi0guXcxff_TsAnGM0wSWuvNF2ggkn7ACMMGekokyKw79avByDk5RWCNVI1mQE1NwFl72BpgvBmezffd5Cn-Ba-5BLOgt9gPmjK5IKAPuubX3QuYsJahO7VAS-btY6fH9-6Ta7WFpaHWwyunen4KjRbXJnvzoGz3e3T7P7avE4f5hdLypDZM2qmiPNOGksEUQzJBmxglGKheFLixvaMIYddbSIlViLGhnGl1IsCSYMTc10DC6GuX3s3jYuZbXqNjGUlWqKeC0Z5ZIX6nKg9ndH16g--rWOW4WR2hmodgaqvYEFxgP84Vu3_YdU5ZGboecHIUVz1g</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Schleimer, Anna</creator><creator>Wittische, Julian</creator><creator>Luttringer, Amanda</creator><creator>Rupprecht, Christina</creator><creator>Andrási, Bálint</creator><creator>Ariey, Hinatea</creator><creator>Cruz, António</creator><creator>Gallego, Gil</creator><creator>Lippert, Stéphanie</creator><creator>Purnomo, Chanistya Ayu</creator><creator>Herrera‐Mesías, Fernanda</creator><creator>Eickermann, Michael</creator><creator>Kharrat‐Jarboui, Imen</creator><creator>Castelen, Lorenzo</creator><creator>Cantú‐Salazar, Lisette</creator><creator>Thissen, Dylan</creator><creator>Meimberg, Harald</creator><creator>Weigand, Alexander M.</creator><creator>Frantz, Alain C.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SS</scope><orcidid>https://orcid.org/0000-0001-6705-8598</orcidid><orcidid>https://orcid.org/0000-0002-8723-2554</orcidid><orcidid>https://orcid.org/0000-0003-1629-7649</orcidid><orcidid>https://orcid.org/0000-0002-9798-5074</orcidid><orcidid>https://orcid.org/0000-0001-8216-871X</orcidid><orcidid>https://orcid.org/0000-0002-9456-3001</orcidid><orcidid>https://orcid.org/0000-0002-5481-7142</orcidid><orcidid>https://orcid.org/0000-0002-2818-9322</orcidid><orcidid>https://orcid.org/0000-0003-3704-902X</orcidid><orcidid>https://orcid.org/0000-0001-7587-6531</orcidid><orcidid>https://orcid.org/0009-0005-6151-4114</orcidid><orcidid>https://orcid.org/0000-0001-6696-2649</orcidid><orcidid>https://orcid.org/0000-0001-6347-0278</orcidid></search><sort><creationdate>202407</creationdate><title>Genetic connectivity is maintained in two insect pollinators across a human‐altered landscape</title><author>Schleimer, Anna ; Wittische, Julian ; Luttringer, Amanda ; Rupprecht, Christina ; Andrási, Bálint ; Ariey, Hinatea ; Cruz, António ; Gallego, Gil ; Lippert, Stéphanie ; Purnomo, Chanistya Ayu ; Herrera‐Mesías, Fernanda ; Eickermann, Michael ; Kharrat‐Jarboui, Imen ; Castelen, Lorenzo ; Cantú‐Salazar, Lisette ; Thissen, Dylan ; Meimberg, Harald ; Weigand, Alexander M. ; Frantz, Alain C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2965-670a572fd282a50952d854418c7bd1f4f551e4e4551d91a860c57b98b212503c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Andrena cineraria</topic><topic>Anthropogenic factors</topic><topic>Bombylius major</topic><topic>Gene flow</topic><topic>Genetic drift</topic><topic>Genetic structure</topic><topic>Genotyping</topic><topic>genotyping‐by‐amplicon‐sequencing</topic><topic>lag time</topic><topic>landscape genetics</topic><topic>microsatellite loci</topic><topic>Pollinators</topic><topic>Population differentiation</topic><topic>Population genetics</topic><topic>Population studies</topic><topic>power analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schleimer, Anna</creatorcontrib><creatorcontrib>Wittische, Julian</creatorcontrib><creatorcontrib>Luttringer, Amanda</creatorcontrib><creatorcontrib>Rupprecht, Christina</creatorcontrib><creatorcontrib>Andrási, Bálint</creatorcontrib><creatorcontrib>Ariey, Hinatea</creatorcontrib><creatorcontrib>Cruz, António</creatorcontrib><creatorcontrib>Gallego, Gil</creatorcontrib><creatorcontrib>Lippert, Stéphanie</creatorcontrib><creatorcontrib>Purnomo, Chanistya Ayu</creatorcontrib><creatorcontrib>Herrera‐Mesías, Fernanda</creatorcontrib><creatorcontrib>Eickermann, Michael</creatorcontrib><creatorcontrib>Kharrat‐Jarboui, Imen</creatorcontrib><creatorcontrib>Castelen, Lorenzo</creatorcontrib><creatorcontrib>Cantú‐Salazar, Lisette</creatorcontrib><creatorcontrib>Thissen, Dylan</creatorcontrib><creatorcontrib>Meimberg, Harald</creatorcontrib><creatorcontrib>Weigand, Alexander M.</creatorcontrib><creatorcontrib>Frantz, Alain C.</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Entomology Abstracts (Full archive)</collection><jtitle>Insect conservation and diversity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schleimer, Anna</au><au>Wittische, Julian</au><au>Luttringer, Amanda</au><au>Rupprecht, Christina</au><au>Andrási, Bálint</au><au>Ariey, Hinatea</au><au>Cruz, António</au><au>Gallego, Gil</au><au>Lippert, Stéphanie</au><au>Purnomo, Chanistya Ayu</au><au>Herrera‐Mesías, Fernanda</au><au>Eickermann, Michael</au><au>Kharrat‐Jarboui, Imen</au><au>Castelen, Lorenzo</au><au>Cantú‐Salazar, Lisette</au><au>Thissen, Dylan</au><au>Meimberg, Harald</au><au>Weigand, Alexander M.</au><au>Frantz, Alain C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic connectivity is maintained in two insect pollinators across a human‐altered landscape</atitle><jtitle>Insect conservation and diversity</jtitle><date>2024-07</date><risdate>2024</risdate><volume>17</volume><issue>4</issue><spage>601</spage><epage>615</epage><pages>601-615</pages><issn>1752-458X</issn><eissn>1752-4598</eissn><abstract>Population genetics is a valuable tool for assessing the impact of human‐altered landscapes on genetic connectivity in various species. However, when applied to insects, challenges arise due to potentially large effective population sizes (Ne), high dispersal capacities and the recency of anthropogenic impacts. This study assessed the population genetic structure of two pollinators across a human‐altered landscape in Luxembourg. Samples from the ashy mining bee (Andrena cineraria, N = 201) and the greater bee fly (Bombylius major, N = 637) were genotyped at 25 microsatellite loci, including a genotyping‐by‐amplicon‐sequencing approach for A. cineraria. Despite high statistical power of FST &gt; 0.002 in B. major and FST &gt; 0.0025 in A. cineraria, no deviations from genetic homogeneity were detected. For both species, there was no evidence for isolation‐by‐distance or genetic clustering. Genetic homogeneity was most likely the result of high levels of gene flow that compensate for the effects of genetic drift. Estimates of Ne ranged between several thousand to tens of thousands, although precision was low. Simulations highlighted that genetic lag times can substantially affect our ability to detect recent (&lt;50 generations) population differentiation when Ne is very large. Lag times were shorter with data from 25,000 simulated di‐allelic loci, but only when sample sizes remained high. Insect genetic studies should consider lag times due to large Ne and ensure sample size and markers offer adequate power to reject the null hypothesis of no landscape effect on genetic connectivity. More than 600 Bombylius major and 200 Andrena cineraria were sampled to study pollinator genetic connectivity across a human‐altered landscape in the heavily fragmented country of Luxembourg. No deviations from genetic homogeneity were detected, highlighting these species' abilities to maintain high genetic connectivity despite extensive land‐use changes. Simulations and power analyses were conducted to assess the impact of effective population size and migration rates on temporal lags to detect genetic differentiation, given the recency of urban development.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1111/icad.12725</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6705-8598</orcidid><orcidid>https://orcid.org/0000-0002-8723-2554</orcidid><orcidid>https://orcid.org/0000-0003-1629-7649</orcidid><orcidid>https://orcid.org/0000-0002-9798-5074</orcidid><orcidid>https://orcid.org/0000-0001-8216-871X</orcidid><orcidid>https://orcid.org/0000-0002-9456-3001</orcidid><orcidid>https://orcid.org/0000-0002-5481-7142</orcidid><orcidid>https://orcid.org/0000-0002-2818-9322</orcidid><orcidid>https://orcid.org/0000-0003-3704-902X</orcidid><orcidid>https://orcid.org/0000-0001-7587-6531</orcidid><orcidid>https://orcid.org/0009-0005-6151-4114</orcidid><orcidid>https://orcid.org/0000-0001-6696-2649</orcidid><orcidid>https://orcid.org/0000-0001-6347-0278</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1752-458X
ispartof Insect conservation and diversity, 2024-07, Vol.17 (4), p.601-615
issn 1752-458X
1752-4598
language eng
recordid cdi_proquest_journals_3076954797
source Access via Wiley Online Library
subjects Andrena cineraria
Anthropogenic factors
Bombylius major
Gene flow
Genetic drift
Genetic structure
Genotyping
genotyping‐by‐amplicon‐sequencing
lag time
landscape genetics
microsatellite loci
Pollinators
Population differentiation
Population genetics
Population studies
power analysis
title Genetic connectivity is maintained in two insect pollinators across a human‐altered landscape
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A51%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20connectivity%20is%20maintained%20in%20two%20insect%20pollinators%20across%20a%20human%E2%80%90altered%20landscape&rft.jtitle=Insect%20conservation%20and%20diversity&rft.au=Schleimer,%20Anna&rft.date=2024-07&rft.volume=17&rft.issue=4&rft.spage=601&rft.epage=615&rft.pages=601-615&rft.issn=1752-458X&rft.eissn=1752-4598&rft_id=info:doi/10.1111/icad.12725&rft_dat=%3Cproquest_cross%3E3076954797%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3076954797&rft_id=info:pmid/&rfr_iscdi=true