Rethinking Image Compression on the Web with Generative AI

The rapid growth of the Internet, driven by social media, web browsing, and video streaming, has made images central to the Web experience, resulting in significant data transfer and increased webpage sizes. Traditional image compression methods, while reducing bandwidth, often degrade image quality...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-07
Hauptverfasser: Shayan Ali Hassan, Danish Humair, Ihsan Ayyub Qazi, Zafar Ayyub Qazi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Shayan Ali Hassan
Danish Humair
Ihsan Ayyub Qazi
Zafar Ayyub Qazi
description The rapid growth of the Internet, driven by social media, web browsing, and video streaming, has made images central to the Web experience, resulting in significant data transfer and increased webpage sizes. Traditional image compression methods, while reducing bandwidth, often degrade image quality. This paper explores a novel approach using generative AI to reconstruct images at the edge or client-side. We develop a framework that leverages text prompts and provides additional conditioning inputs like Canny edges and color palettes to a text-to-image model, achieving up to 99.8% bandwidth savings in the best cases and 92.6% on average, while maintaining high perceptual similarity. Empirical analysis and a user study show that our method preserves image meaning and structure more effectively than traditional compression methods, offering a promising solution for reducing bandwidth usage and improving Internet affordability with minimal degradation in image quality.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3076829441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3076829441</sourcerecordid><originalsourceid>FETCH-proquest_journals_30768294413</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwCkotycjMy87MS1fwzE1MT1Vwzs8tKEotLs7Mz1MAopKMVIXw1CSF8sySDAX31LzUosSSzLJUBUdPHgbWtMSc4lReKM3NoOzmGuLsoVtQlF9YmlpcEp-VX1qUB5SKNzYwN7MwsjQxMTQmThUAfUE2Kw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3076829441</pqid></control><display><type>article</type><title>Rethinking Image Compression on the Web with Generative AI</title><source>Free E- Journals</source><creator>Shayan Ali Hassan ; Danish Humair ; Ihsan Ayyub Qazi ; Zafar Ayyub Qazi</creator><creatorcontrib>Shayan Ali Hassan ; Danish Humair ; Ihsan Ayyub Qazi ; Zafar Ayyub Qazi</creatorcontrib><description>The rapid growth of the Internet, driven by social media, web browsing, and video streaming, has made images central to the Web experience, resulting in significant data transfer and increased webpage sizes. Traditional image compression methods, while reducing bandwidth, often degrade image quality. This paper explores a novel approach using generative AI to reconstruct images at the edge or client-side. We develop a framework that leverages text prompts and provides additional conditioning inputs like Canny edges and color palettes to a text-to-image model, achieving up to 99.8% bandwidth savings in the best cases and 92.6% on average, while maintaining high perceptual similarity. Empirical analysis and a user study show that our method preserves image meaning and structure more effectively than traditional compression methods, offering a promising solution for reducing bandwidth usage and improving Internet affordability with minimal degradation in image quality.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Data transfer (computers) ; Empirical analysis ; Generative artificial intelligence ; Image compression ; Image degradation ; Image quality ; Image reconstruction ; Internet ; Video transmission</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Shayan Ali Hassan</creatorcontrib><creatorcontrib>Danish Humair</creatorcontrib><creatorcontrib>Ihsan Ayyub Qazi</creatorcontrib><creatorcontrib>Zafar Ayyub Qazi</creatorcontrib><title>Rethinking Image Compression on the Web with Generative AI</title><title>arXiv.org</title><description>The rapid growth of the Internet, driven by social media, web browsing, and video streaming, has made images central to the Web experience, resulting in significant data transfer and increased webpage sizes. Traditional image compression methods, while reducing bandwidth, often degrade image quality. This paper explores a novel approach using generative AI to reconstruct images at the edge or client-side. We develop a framework that leverages text prompts and provides additional conditioning inputs like Canny edges and color palettes to a text-to-image model, achieving up to 99.8% bandwidth savings in the best cases and 92.6% on average, while maintaining high perceptual similarity. Empirical analysis and a user study show that our method preserves image meaning and structure more effectively than traditional compression methods, offering a promising solution for reducing bandwidth usage and improving Internet affordability with minimal degradation in image quality.</description><subject>Data transfer (computers)</subject><subject>Empirical analysis</subject><subject>Generative artificial intelligence</subject><subject>Image compression</subject><subject>Image degradation</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Internet</subject><subject>Video transmission</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwCkotycjMy87MS1fwzE1MT1Vwzs8tKEotLs7Mz1MAopKMVIXw1CSF8sySDAX31LzUosSSzLJUBUdPHgbWtMSc4lReKM3NoOzmGuLsoVtQlF9YmlpcEp-VX1qUB5SKNzYwN7MwsjQxMTQmThUAfUE2Kw</recordid><startdate>20240705</startdate><enddate>20240705</enddate><creator>Shayan Ali Hassan</creator><creator>Danish Humair</creator><creator>Ihsan Ayyub Qazi</creator><creator>Zafar Ayyub Qazi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240705</creationdate><title>Rethinking Image Compression on the Web with Generative AI</title><author>Shayan Ali Hassan ; Danish Humair ; Ihsan Ayyub Qazi ; Zafar Ayyub Qazi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30768294413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Data transfer (computers)</topic><topic>Empirical analysis</topic><topic>Generative artificial intelligence</topic><topic>Image compression</topic><topic>Image degradation</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Internet</topic><topic>Video transmission</topic><toplevel>online_resources</toplevel><creatorcontrib>Shayan Ali Hassan</creatorcontrib><creatorcontrib>Danish Humair</creatorcontrib><creatorcontrib>Ihsan Ayyub Qazi</creatorcontrib><creatorcontrib>Zafar Ayyub Qazi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shayan Ali Hassan</au><au>Danish Humair</au><au>Ihsan Ayyub Qazi</au><au>Zafar Ayyub Qazi</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Rethinking Image Compression on the Web with Generative AI</atitle><jtitle>arXiv.org</jtitle><date>2024-07-05</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The rapid growth of the Internet, driven by social media, web browsing, and video streaming, has made images central to the Web experience, resulting in significant data transfer and increased webpage sizes. Traditional image compression methods, while reducing bandwidth, often degrade image quality. This paper explores a novel approach using generative AI to reconstruct images at the edge or client-side. We develop a framework that leverages text prompts and provides additional conditioning inputs like Canny edges and color palettes to a text-to-image model, achieving up to 99.8% bandwidth savings in the best cases and 92.6% on average, while maintaining high perceptual similarity. Empirical analysis and a user study show that our method preserves image meaning and structure more effectively than traditional compression methods, offering a promising solution for reducing bandwidth usage and improving Internet affordability with minimal degradation in image quality.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_3076829441
source Free E- Journals
subjects Data transfer (computers)
Empirical analysis
Generative artificial intelligence
Image compression
Image degradation
Image quality
Image reconstruction
Internet
Video transmission
title Rethinking Image Compression on the Web with Generative AI
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A09%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Rethinking%20Image%20Compression%20on%20the%20Web%20with%20Generative%20AI&rft.jtitle=arXiv.org&rft.au=Shayan%20Ali%20Hassan&rft.date=2024-07-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3076829441%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3076829441&rft_id=info:pmid/&rfr_iscdi=true