Understanding Spin‐Triplet Excited States in Carbene‐Metal‐Amides

Carbene‐metal‐amides (CMAs) are emerging delayed fluorescence materials for organic light‐emitting diode (OLED) applications. CMAs possess fast, efficient emission owing to rapid forward and reverse intersystem crossing (ISC) rates. The resulting dynamic equilibrium between singlet and triplet spin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2024-07, Vol.136 (29), p.n/a
Hauptverfasser: Reponen, Antti‐Pekka M., Londi, Giacomo, Matthews, Campbell S. B., Olivier, Yoann, Romanov, Alexander S., Greenham, Neil C., Gillett, Alexander J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 29
container_start_page
container_title Angewandte Chemie
container_volume 136
creator Reponen, Antti‐Pekka M.
Londi, Giacomo
Matthews, Campbell S. B.
Olivier, Yoann
Romanov, Alexander S.
Greenham, Neil C.
Gillett, Alexander J.
description Carbene‐metal‐amides (CMAs) are emerging delayed fluorescence materials for organic light‐emitting diode (OLED) applications. CMAs possess fast, efficient emission owing to rapid forward and reverse intersystem crossing (ISC) rates. The resulting dynamic equilibrium between singlet and triplet spin manifolds distinguishes CMAs from most purely organic thermally activated delayed fluorescence emitters. However, direct experimental triplet characterization in CMAs is underutilized, limiting our detailed understanding of the ISC mechanism. In this work, we combine time‐resolved spectroscopy with tuning of state energies through environmental polarity and metal substitution, focusing on the interplay between charge‐transfer (3CT) and local exciton (3LE) triplets. Unlike previous photophysical work, we investigate evaporated host : guest films of CMAs and small‐molecule hosts for increased device relevance. Transient absorption reveals an evolution in the triplet excited‐state absorption (ESA) consistent with a change in orbital character between hosts with differing dielectric constants. Using quantum chemical calculations, we simulate ESAs of the lowest triplet states, highlighting the contribution of only 3CT and donor‐moiety 3LE states to spectral features, with no strong evidence for a low‐lying acceptor‐centered 3LE. Thus, our work provides a blueprint for understanding the role of triplet excited states in CMAs which will enable further intelligent optimization of this promising class of materials. Carbene‐Metal‐Amides (CMAs) are emerging delayed fluorescence emitters with unusual photophysics and open questions involving the nature and population of non‐emissive triplets. We have combined time‐resolved spectroscopy with quantum chemical calculations to establish a direct experimental handle for characterizing populated spin‐triplet excitations in benchmark coinage metal CMAs through excited‐state absorption (ESA) signatures. Polarity‐induced population/ESA shifts match well between experiments and calculations.
doi_str_mv 10.1002/ange.202402052
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3076684163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3076684163</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1572-703b5b06dfdfc9e90ce7e87c3cee56c5c07c13376fd06b05ccf1cbaf8969d8eb3</originalsourceid><addsrcrecordid>eNqFkLFOwzAURS0EEqWwMkdiTnm2YzsZq6oUpAJD2zly7JfKVeoGOxWw8Ql8I19CqiIYme5yznvSIeSawogCsFvt1zhiwDJgINgJGVDBaMqVUKdkAJBlac6y4pxcxLgBAMlUMSCzlbcYYqe9dX6dLFrnvz4-l8G1DXbJ9M24Dm2y6HSHMXE-mehQoceeecRON_2Ot85ivCRntW4iXv3skKzupsvJfTp_nj1MxvPUUKFYqoBXogJpa1ubAgswqDBXhhtEIY0woAzlXMnagqxAGFNTU-k6L2Rhc6z4kNwc77Zh97LH2JWb3T74_mXJQUmZZ1TynhodKRN2MQasyza4rQ7vJYXyEKs8xCp_Y_VCcRReXYPv_9Dl-Gk2_XO_AYeGcVk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3076684163</pqid></control><display><type>article</type><title>Understanding Spin‐Triplet Excited States in Carbene‐Metal‐Amides</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Reponen, Antti‐Pekka M. ; Londi, Giacomo ; Matthews, Campbell S. B. ; Olivier, Yoann ; Romanov, Alexander S. ; Greenham, Neil C. ; Gillett, Alexander J.</creator><creatorcontrib>Reponen, Antti‐Pekka M. ; Londi, Giacomo ; Matthews, Campbell S. B. ; Olivier, Yoann ; Romanov, Alexander S. ; Greenham, Neil C. ; Gillett, Alexander J.</creatorcontrib><description>Carbene‐metal‐amides (CMAs) are emerging delayed fluorescence materials for organic light‐emitting diode (OLED) applications. CMAs possess fast, efficient emission owing to rapid forward and reverse intersystem crossing (ISC) rates. The resulting dynamic equilibrium between singlet and triplet spin manifolds distinguishes CMAs from most purely organic thermally activated delayed fluorescence emitters. However, direct experimental triplet characterization in CMAs is underutilized, limiting our detailed understanding of the ISC mechanism. In this work, we combine time‐resolved spectroscopy with tuning of state energies through environmental polarity and metal substitution, focusing on the interplay between charge‐transfer (3CT) and local exciton (3LE) triplets. Unlike previous photophysical work, we investigate evaporated host : guest films of CMAs and small‐molecule hosts for increased device relevance. Transient absorption reveals an evolution in the triplet excited‐state absorption (ESA) consistent with a change in orbital character between hosts with differing dielectric constants. Using quantum chemical calculations, we simulate ESAs of the lowest triplet states, highlighting the contribution of only 3CT and donor‐moiety 3LE states to spectral features, with no strong evidence for a low‐lying acceptor‐centered 3LE. Thus, our work provides a blueprint for understanding the role of triplet excited states in CMAs which will enable further intelligent optimization of this promising class of materials. Carbene‐Metal‐Amides (CMAs) are emerging delayed fluorescence emitters with unusual photophysics and open questions involving the nature and population of non‐emissive triplets. We have combined time‐resolved spectroscopy with quantum chemical calculations to establish a direct experimental handle for characterizing populated spin‐triplet excitations in benchmark coinage metal CMAs through excited‐state absorption (ESA) signatures. Polarity‐induced population/ESA shifts match well between experiments and calculations.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202402052</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Absorption ; Amides ; Carbenes ; density functional calculations ; Emitters ; Excitation ; Excitons ; Fluorescence ; laser spectroscopy ; Light emitting diodes ; luminescence ; Quantum chemistry ; Spectroscopy ; Spin dynamics ; time-resolved spectroscopy ; transition metals</subject><ispartof>Angewandte Chemie, 2024-07, Vol.136 (29), p.n/a</ispartof><rights>2024 The Authors. Angewandte Chemie published by Wiley-VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1572-703b5b06dfdfc9e90ce7e87c3cee56c5c07c13376fd06b05ccf1cbaf8969d8eb3</cites><orcidid>0000-0002-2076-410X ; 0000-0001-7572-7333 ; 0000-0003-2193-1536</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202402052$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202402052$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Reponen, Antti‐Pekka M.</creatorcontrib><creatorcontrib>Londi, Giacomo</creatorcontrib><creatorcontrib>Matthews, Campbell S. B.</creatorcontrib><creatorcontrib>Olivier, Yoann</creatorcontrib><creatorcontrib>Romanov, Alexander S.</creatorcontrib><creatorcontrib>Greenham, Neil C.</creatorcontrib><creatorcontrib>Gillett, Alexander J.</creatorcontrib><title>Understanding Spin‐Triplet Excited States in Carbene‐Metal‐Amides</title><title>Angewandte Chemie</title><description>Carbene‐metal‐amides (CMAs) are emerging delayed fluorescence materials for organic light‐emitting diode (OLED) applications. CMAs possess fast, efficient emission owing to rapid forward and reverse intersystem crossing (ISC) rates. The resulting dynamic equilibrium between singlet and triplet spin manifolds distinguishes CMAs from most purely organic thermally activated delayed fluorescence emitters. However, direct experimental triplet characterization in CMAs is underutilized, limiting our detailed understanding of the ISC mechanism. In this work, we combine time‐resolved spectroscopy with tuning of state energies through environmental polarity and metal substitution, focusing on the interplay between charge‐transfer (3CT) and local exciton (3LE) triplets. Unlike previous photophysical work, we investigate evaporated host : guest films of CMAs and small‐molecule hosts for increased device relevance. Transient absorption reveals an evolution in the triplet excited‐state absorption (ESA) consistent with a change in orbital character between hosts with differing dielectric constants. Using quantum chemical calculations, we simulate ESAs of the lowest triplet states, highlighting the contribution of only 3CT and donor‐moiety 3LE states to spectral features, with no strong evidence for a low‐lying acceptor‐centered 3LE. Thus, our work provides a blueprint for understanding the role of triplet excited states in CMAs which will enable further intelligent optimization of this promising class of materials. Carbene‐Metal‐Amides (CMAs) are emerging delayed fluorescence emitters with unusual photophysics and open questions involving the nature and population of non‐emissive triplets. We have combined time‐resolved spectroscopy with quantum chemical calculations to establish a direct experimental handle for characterizing populated spin‐triplet excitations in benchmark coinage metal CMAs through excited‐state absorption (ESA) signatures. Polarity‐induced population/ESA shifts match well between experiments and calculations.</description><subject>Absorption</subject><subject>Amides</subject><subject>Carbenes</subject><subject>density functional calculations</subject><subject>Emitters</subject><subject>Excitation</subject><subject>Excitons</subject><subject>Fluorescence</subject><subject>laser spectroscopy</subject><subject>Light emitting diodes</subject><subject>luminescence</subject><subject>Quantum chemistry</subject><subject>Spectroscopy</subject><subject>Spin dynamics</subject><subject>time-resolved spectroscopy</subject><subject>transition metals</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkLFOwzAURS0EEqWwMkdiTnm2YzsZq6oUpAJD2zly7JfKVeoGOxWw8Ql8I19CqiIYme5yznvSIeSawogCsFvt1zhiwDJgINgJGVDBaMqVUKdkAJBlac6y4pxcxLgBAMlUMSCzlbcYYqe9dX6dLFrnvz4-l8G1DXbJ9M24Dm2y6HSHMXE-mehQoceeecRON_2Ot85ivCRntW4iXv3skKzupsvJfTp_nj1MxvPUUKFYqoBXogJpa1ubAgswqDBXhhtEIY0woAzlXMnagqxAGFNTU-k6L2Rhc6z4kNwc77Zh97LH2JWb3T74_mXJQUmZZ1TynhodKRN2MQasyza4rQ7vJYXyEKs8xCp_Y_VCcRReXYPv_9Dl-Gk2_XO_AYeGcVk</recordid><startdate>20240715</startdate><enddate>20240715</enddate><creator>Reponen, Antti‐Pekka M.</creator><creator>Londi, Giacomo</creator><creator>Matthews, Campbell S. B.</creator><creator>Olivier, Yoann</creator><creator>Romanov, Alexander S.</creator><creator>Greenham, Neil C.</creator><creator>Gillett, Alexander J.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2076-410X</orcidid><orcidid>https://orcid.org/0000-0001-7572-7333</orcidid><orcidid>https://orcid.org/0000-0003-2193-1536</orcidid></search><sort><creationdate>20240715</creationdate><title>Understanding Spin‐Triplet Excited States in Carbene‐Metal‐Amides</title><author>Reponen, Antti‐Pekka M. ; Londi, Giacomo ; Matthews, Campbell S. B. ; Olivier, Yoann ; Romanov, Alexander S. ; Greenham, Neil C. ; Gillett, Alexander J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1572-703b5b06dfdfc9e90ce7e87c3cee56c5c07c13376fd06b05ccf1cbaf8969d8eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorption</topic><topic>Amides</topic><topic>Carbenes</topic><topic>density functional calculations</topic><topic>Emitters</topic><topic>Excitation</topic><topic>Excitons</topic><topic>Fluorescence</topic><topic>laser spectroscopy</topic><topic>Light emitting diodes</topic><topic>luminescence</topic><topic>Quantum chemistry</topic><topic>Spectroscopy</topic><topic>Spin dynamics</topic><topic>time-resolved spectroscopy</topic><topic>transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reponen, Antti‐Pekka M.</creatorcontrib><creatorcontrib>Londi, Giacomo</creatorcontrib><creatorcontrib>Matthews, Campbell S. B.</creatorcontrib><creatorcontrib>Olivier, Yoann</creatorcontrib><creatorcontrib>Romanov, Alexander S.</creatorcontrib><creatorcontrib>Greenham, Neil C.</creatorcontrib><creatorcontrib>Gillett, Alexander J.</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reponen, Antti‐Pekka M.</au><au>Londi, Giacomo</au><au>Matthews, Campbell S. B.</au><au>Olivier, Yoann</au><au>Romanov, Alexander S.</au><au>Greenham, Neil C.</au><au>Gillett, Alexander J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding Spin‐Triplet Excited States in Carbene‐Metal‐Amides</atitle><jtitle>Angewandte Chemie</jtitle><date>2024-07-15</date><risdate>2024</risdate><volume>136</volume><issue>29</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Carbene‐metal‐amides (CMAs) are emerging delayed fluorescence materials for organic light‐emitting diode (OLED) applications. CMAs possess fast, efficient emission owing to rapid forward and reverse intersystem crossing (ISC) rates. The resulting dynamic equilibrium between singlet and triplet spin manifolds distinguishes CMAs from most purely organic thermally activated delayed fluorescence emitters. However, direct experimental triplet characterization in CMAs is underutilized, limiting our detailed understanding of the ISC mechanism. In this work, we combine time‐resolved spectroscopy with tuning of state energies through environmental polarity and metal substitution, focusing on the interplay between charge‐transfer (3CT) and local exciton (3LE) triplets. Unlike previous photophysical work, we investigate evaporated host : guest films of CMAs and small‐molecule hosts for increased device relevance. Transient absorption reveals an evolution in the triplet excited‐state absorption (ESA) consistent with a change in orbital character between hosts with differing dielectric constants. Using quantum chemical calculations, we simulate ESAs of the lowest triplet states, highlighting the contribution of only 3CT and donor‐moiety 3LE states to spectral features, with no strong evidence for a low‐lying acceptor‐centered 3LE. Thus, our work provides a blueprint for understanding the role of triplet excited states in CMAs which will enable further intelligent optimization of this promising class of materials. Carbene‐Metal‐Amides (CMAs) are emerging delayed fluorescence emitters with unusual photophysics and open questions involving the nature and population of non‐emissive triplets. We have combined time‐resolved spectroscopy with quantum chemical calculations to establish a direct experimental handle for characterizing populated spin‐triplet excitations in benchmark coinage metal CMAs through excited‐state absorption (ESA) signatures. Polarity‐induced population/ESA shifts match well between experiments and calculations.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202402052</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2076-410X</orcidid><orcidid>https://orcid.org/0000-0001-7572-7333</orcidid><orcidid>https://orcid.org/0000-0003-2193-1536</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2024-07, Vol.136 (29), p.n/a
issn 0044-8249
1521-3757
language eng
recordid cdi_proquest_journals_3076684163
source Wiley Online Library Journals Frontfile Complete
subjects Absorption
Amides
Carbenes
density functional calculations
Emitters
Excitation
Excitons
Fluorescence
laser spectroscopy
Light emitting diodes
luminescence
Quantum chemistry
Spectroscopy
Spin dynamics
time-resolved spectroscopy
transition metals
title Understanding Spin‐Triplet Excited States in Carbene‐Metal‐Amides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A05%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20Spin%E2%80%90Triplet%20Excited%20States%20in%20Carbene%E2%80%90Metal%E2%80%90Amides&rft.jtitle=Angewandte%20Chemie&rft.au=Reponen,%20Antti%E2%80%90Pekka%20M.&rft.date=2024-07-15&rft.volume=136&rft.issue=29&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202402052&rft_dat=%3Cproquest_cross%3E3076684163%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3076684163&rft_id=info:pmid/&rfr_iscdi=true