Study of temperature-sensitive gel electrolytes for energy storage devices with self-protection behavior

The lifetime and application of electrochemical storage devices are always threatened by thermal runaway. Intelligent self-protecting gel electrolytes can be designed using temperature-responsive polymers. However, the mechanisms and factors affecting protective behavior are unclear. Here, we fabric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ionics 2024, Vol.30 (7), p.3963-3972
Hauptverfasser: Liu, Jialiang, Ma, Shaoshuai, Xu, Xinhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3972
container_issue 7
container_start_page 3963
container_title Ionics
container_volume 30
creator Liu, Jialiang
Ma, Shaoshuai
Xu, Xinhua
description The lifetime and application of electrochemical storage devices are always threatened by thermal runaway. Intelligent self-protecting gel electrolytes can be designed using temperature-responsive polymers. However, the mechanisms and factors affecting protective behavior are unclear. Here, we fabricated supercapacitors using temperature-responsive polyacrylamide-2-hydroxyethyl acrylate (PNIPAM-co-HEA) hydrogel polyelectrolytes. It was found that the polymer changed from hydrophilic to hydrophobic with increasing temperature, and the physical cross-linking of the polymer molecular strands in the electrolyte was enhanced, thus restricting conductive ion migration and closing the ion transportation pathway. The hydrophilic–hydrophobic transition on the gel surface also contributed to the suppression of the specific capacitance of the supercapacitor. This self-protection feature is repeatable. In addition, we investigated the effect of methyl groups in the main chain structure on the electrochemical properties using poly( N -isopropylacrylamide-co-2-hydroxyethyl methacrylate) (PNIPAM-co-HEMA). Methylene enhanced the hydrophobicity of the polymer at room temperature and reduced the thermo-protective effect. The methyl group in the main chain also reduced the thermal response temperature of the polymer. This study explores the mechanism by which temperature-responsive polymers inhibit thermal runaway in supercapacitors and provides support for the design of more rational and efficient temperature-sensitive electrolytes.
doi_str_mv 10.1007/s11581-024-05580-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3076418957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3076418957</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-1381b7ce72d2963d298c1e0fe72cb813494aa59bac737b6350d9ec7174859a463</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Bz9FJ0zbpURb_geBBPYc0nXa7dJs1SVf22xut4M3LDMy892b4EXLJ4ZoDyJvAeaE4gyxnUBQKmDoiC67KjIEs4ZgsoMolk5DLU3IWwgagLHkmF2T9GqfmQF1LI2536E2cPLKAY-hjv0fa4UBxQBu9Gw4RA22dpzii7w40ROdNh7TBfW_T6rOPaxpwaNnOu5g8vRtpjWuz750_JyetGQJe_PYleb-_e1s9sueXh6fV7TOzmYTIuFC8lhZl1mRVKVJRliO0aWBrxUVe5cYUVW2sFLIuRQFNhVZymauiMnkpluRqzk0_fEwYot64yY_ppBaJRc5VVcikymaV9S4Ej63e-X5r_EFz0N9E9UxUJ6L6h6hWySRmU0jisUP_F_2P6wt4bXrJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3076418957</pqid></control><display><type>article</type><title>Study of temperature-sensitive gel electrolytes for energy storage devices with self-protection behavior</title><source>SpringerLink Journals</source><creator>Liu, Jialiang ; Ma, Shaoshuai ; Xu, Xinhua</creator><creatorcontrib>Liu, Jialiang ; Ma, Shaoshuai ; Xu, Xinhua</creatorcontrib><description>The lifetime and application of electrochemical storage devices are always threatened by thermal runaway. Intelligent self-protecting gel electrolytes can be designed using temperature-responsive polymers. However, the mechanisms and factors affecting protective behavior are unclear. Here, we fabricated supercapacitors using temperature-responsive polyacrylamide-2-hydroxyethyl acrylate (PNIPAM-co-HEA) hydrogel polyelectrolytes. It was found that the polymer changed from hydrophilic to hydrophobic with increasing temperature, and the physical cross-linking of the polymer molecular strands in the electrolyte was enhanced, thus restricting conductive ion migration and closing the ion transportation pathway. The hydrophilic–hydrophobic transition on the gel surface also contributed to the suppression of the specific capacitance of the supercapacitor. This self-protection feature is repeatable. In addition, we investigated the effect of methyl groups in the main chain structure on the electrochemical properties using poly( N -isopropylacrylamide-co-2-hydroxyethyl methacrylate) (PNIPAM-co-HEMA). Methylene enhanced the hydrophobicity of the polymer at room temperature and reduced the thermo-protective effect. The methyl group in the main chain also reduced the thermal response temperature of the polymer. This study explores the mechanism by which temperature-responsive polymers inhibit thermal runaway in supercapacitors and provides support for the design of more rational and efficient temperature-sensitive electrolytes.</description><identifier>ISSN: 0947-7047</identifier><identifier>EISSN: 1862-0760</identifier><identifier>DOI: 10.1007/s11581-024-05580-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Crosslinking ; Electrochemical analysis ; Electrochemistry ; Electrolytes ; Energy Storage ; Hydrophilicity ; Hydrophobicity ; Hydroxyethyl acrylate ; Ion migration ; Isopropylacrylamide ; Optical and Electronic Materials ; Polyacrylamide ; Polyelectrolytes ; Polyhydroxyethyl methacrylate ; Polymers ; Renewable and Green Energy ; Room temperature ; Supercapacitors ; Thermal response ; Thermal runaway</subject><ispartof>Ionics, 2024, Vol.30 (7), p.3963-3972</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-1381b7ce72d2963d298c1e0fe72cb813494aa59bac737b6350d9ec7174859a463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11581-024-05580-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11581-024-05580-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Liu, Jialiang</creatorcontrib><creatorcontrib>Ma, Shaoshuai</creatorcontrib><creatorcontrib>Xu, Xinhua</creatorcontrib><title>Study of temperature-sensitive gel electrolytes for energy storage devices with self-protection behavior</title><title>Ionics</title><addtitle>Ionics</addtitle><description>The lifetime and application of electrochemical storage devices are always threatened by thermal runaway. Intelligent self-protecting gel electrolytes can be designed using temperature-responsive polymers. However, the mechanisms and factors affecting protective behavior are unclear. Here, we fabricated supercapacitors using temperature-responsive polyacrylamide-2-hydroxyethyl acrylate (PNIPAM-co-HEA) hydrogel polyelectrolytes. It was found that the polymer changed from hydrophilic to hydrophobic with increasing temperature, and the physical cross-linking of the polymer molecular strands in the electrolyte was enhanced, thus restricting conductive ion migration and closing the ion transportation pathway. The hydrophilic–hydrophobic transition on the gel surface also contributed to the suppression of the specific capacitance of the supercapacitor. This self-protection feature is repeatable. In addition, we investigated the effect of methyl groups in the main chain structure on the electrochemical properties using poly( N -isopropylacrylamide-co-2-hydroxyethyl methacrylate) (PNIPAM-co-HEMA). Methylene enhanced the hydrophobicity of the polymer at room temperature and reduced the thermo-protective effect. The methyl group in the main chain also reduced the thermal response temperature of the polymer. This study explores the mechanism by which temperature-responsive polymers inhibit thermal runaway in supercapacitors and provides support for the design of more rational and efficient temperature-sensitive electrolytes.</description><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Crosslinking</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrolytes</subject><subject>Energy Storage</subject><subject>Hydrophilicity</subject><subject>Hydrophobicity</subject><subject>Hydroxyethyl acrylate</subject><subject>Ion migration</subject><subject>Isopropylacrylamide</subject><subject>Optical and Electronic Materials</subject><subject>Polyacrylamide</subject><subject>Polyelectrolytes</subject><subject>Polyhydroxyethyl methacrylate</subject><subject>Polymers</subject><subject>Renewable and Green Energy</subject><subject>Room temperature</subject><subject>Supercapacitors</subject><subject>Thermal response</subject><subject>Thermal runaway</subject><issn>0947-7047</issn><issn>1862-0760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8Bz9FJ0zbpURb_geBBPYc0nXa7dJs1SVf22xut4M3LDMy892b4EXLJ4ZoDyJvAeaE4gyxnUBQKmDoiC67KjIEs4ZgsoMolk5DLU3IWwgagLHkmF2T9GqfmQF1LI2536E2cPLKAY-hjv0fa4UBxQBu9Gw4RA22dpzii7w40ROdNh7TBfW_T6rOPaxpwaNnOu5g8vRtpjWuz750_JyetGQJe_PYleb-_e1s9sueXh6fV7TOzmYTIuFC8lhZl1mRVKVJRliO0aWBrxUVe5cYUVW2sFLIuRQFNhVZymauiMnkpluRqzk0_fEwYot64yY_ppBaJRc5VVcikymaV9S4Ej63e-X5r_EFz0N9E9UxUJ6L6h6hWySRmU0jisUP_F_2P6wt4bXrJ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Liu, Jialiang</creator><creator>Ma, Shaoshuai</creator><creator>Xu, Xinhua</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>Study of temperature-sensitive gel electrolytes for energy storage devices with self-protection behavior</title><author>Liu, Jialiang ; Ma, Shaoshuai ; Xu, Xinhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-1381b7ce72d2963d298c1e0fe72cb813494aa59bac737b6350d9ec7174859a463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Crosslinking</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrolytes</topic><topic>Energy Storage</topic><topic>Hydrophilicity</topic><topic>Hydrophobicity</topic><topic>Hydroxyethyl acrylate</topic><topic>Ion migration</topic><topic>Isopropylacrylamide</topic><topic>Optical and Electronic Materials</topic><topic>Polyacrylamide</topic><topic>Polyelectrolytes</topic><topic>Polyhydroxyethyl methacrylate</topic><topic>Polymers</topic><topic>Renewable and Green Energy</topic><topic>Room temperature</topic><topic>Supercapacitors</topic><topic>Thermal response</topic><topic>Thermal runaway</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jialiang</creatorcontrib><creatorcontrib>Ma, Shaoshuai</creatorcontrib><creatorcontrib>Xu, Xinhua</creatorcontrib><collection>CrossRef</collection><jtitle>Ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jialiang</au><au>Ma, Shaoshuai</au><au>Xu, Xinhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of temperature-sensitive gel electrolytes for energy storage devices with self-protection behavior</atitle><jtitle>Ionics</jtitle><stitle>Ionics</stitle><date>2024</date><risdate>2024</risdate><volume>30</volume><issue>7</issue><spage>3963</spage><epage>3972</epage><pages>3963-3972</pages><issn>0947-7047</issn><eissn>1862-0760</eissn><abstract>The lifetime and application of electrochemical storage devices are always threatened by thermal runaway. Intelligent self-protecting gel electrolytes can be designed using temperature-responsive polymers. However, the mechanisms and factors affecting protective behavior are unclear. Here, we fabricated supercapacitors using temperature-responsive polyacrylamide-2-hydroxyethyl acrylate (PNIPAM-co-HEA) hydrogel polyelectrolytes. It was found that the polymer changed from hydrophilic to hydrophobic with increasing temperature, and the physical cross-linking of the polymer molecular strands in the electrolyte was enhanced, thus restricting conductive ion migration and closing the ion transportation pathway. The hydrophilic–hydrophobic transition on the gel surface also contributed to the suppression of the specific capacitance of the supercapacitor. This self-protection feature is repeatable. In addition, we investigated the effect of methyl groups in the main chain structure on the electrochemical properties using poly( N -isopropylacrylamide-co-2-hydroxyethyl methacrylate) (PNIPAM-co-HEMA). Methylene enhanced the hydrophobicity of the polymer at room temperature and reduced the thermo-protective effect. The methyl group in the main chain also reduced the thermal response temperature of the polymer. This study explores the mechanism by which temperature-responsive polymers inhibit thermal runaway in supercapacitors and provides support for the design of more rational and efficient temperature-sensitive electrolytes.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11581-024-05580-8</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-7047
ispartof Ionics, 2024, Vol.30 (7), p.3963-3972
issn 0947-7047
1862-0760
language eng
recordid cdi_proquest_journals_3076418957
source SpringerLink Journals
subjects Chemistry
Chemistry and Materials Science
Condensed Matter Physics
Crosslinking
Electrochemical analysis
Electrochemistry
Electrolytes
Energy Storage
Hydrophilicity
Hydrophobicity
Hydroxyethyl acrylate
Ion migration
Isopropylacrylamide
Optical and Electronic Materials
Polyacrylamide
Polyelectrolytes
Polyhydroxyethyl methacrylate
Polymers
Renewable and Green Energy
Room temperature
Supercapacitors
Thermal response
Thermal runaway
title Study of temperature-sensitive gel electrolytes for energy storage devices with self-protection behavior
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A31%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20temperature-sensitive%20gel%20electrolytes%20for%20energy%20storage%20devices%20with%20self-protection%20behavior&rft.jtitle=Ionics&rft.au=Liu,%20Jialiang&rft.date=2024&rft.volume=30&rft.issue=7&rft.spage=3963&rft.epage=3972&rft.pages=3963-3972&rft.issn=0947-7047&rft.eissn=1862-0760&rft_id=info:doi/10.1007/s11581-024-05580-8&rft_dat=%3Cproquest_cross%3E3076418957%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3076418957&rft_id=info:pmid/&rfr_iscdi=true