On an Initial Value Problem for Nonconvex-Valued Fractional Differential Inclusions in a Banach Space

Based on fixed point theory for condensing operators, an initial value problem for semilinear differential inclusions of fractional order in Banach spaces is studied. It is assumed that the linear part of the inclusion generates a family of cosine operator functions and the nonlinear part is a multi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical Notes 2024-04, Vol.115 (3-4), p.358-370
Hauptverfasser: Obukhovskii, V. V., Petrosyan, G. G., Soroka, M. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 370
container_issue 3-4
container_start_page 358
container_title Mathematical Notes
container_volume 115
creator Obukhovskii, V. V.
Petrosyan, G. G.
Soroka, M. S.
description Based on fixed point theory for condensing operators, an initial value problem for semilinear differential inclusions of fractional order in Banach spaces is studied. It is assumed that the linear part of the inclusion generates a family of cosine operator functions and the nonlinear part is a multivalued map with nonconvex values. Local and global existence theorems for mild solutions of the initial value problem are proved.
doi_str_mv 10.1134/S0001434624030088
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3076275668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3076275668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-63a5f3e8296f97882e31e04dbdeba75e6b57a56e112d8876692001c196f4c8393</originalsourceid><addsrcrecordid>eNp1kFFLwzAUhYMoOKc_wLeAz9WkaZP0UafTwXDC1NeSpjfa0SUzaYf-e9NN8EF8ulzO-Q73XITOKbmklGVXS0IIzVjG04wwQqQ8QCOaC5ZIKfghGg1yMujH6CSEVdwop2SEYGGxsnhmm65RLX5VbQ_4ybuqhTU2zuNHZ7WzW_hMdlqNp17prnE2um8bY8CD3aEzq9s-RCHgJmbiG2WVfsfLjdJwio6MagOc_cwxepnePU8ekvnifja5nieaFrJLOFO5YSDTgptCSJkCo0CyuqqhUiIHXuVC5RwoTeuhFy_SWCSy3GRasoKN0cU-d-PdRw-hK1eu9_HUUDIieCpyzmV00b1LexeCB1NufLNW_qukpBy-Wf75ZmTSPROi176B_03-H_oGQhp1DQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3076275668</pqid></control><display><type>article</type><title>On an Initial Value Problem for Nonconvex-Valued Fractional Differential Inclusions in a Banach Space</title><source>Springer Nature - Complete Springer Journals</source><creator>Obukhovskii, V. V. ; Petrosyan, G. G. ; Soroka, M. S.</creator><creatorcontrib>Obukhovskii, V. V. ; Petrosyan, G. G. ; Soroka, M. S.</creatorcontrib><description>Based on fixed point theory for condensing operators, an initial value problem for semilinear differential inclusions of fractional order in Banach spaces is studied. It is assumed that the linear part of the inclusion generates a family of cosine operator functions and the nonlinear part is a multivalued map with nonconvex values. Local and global existence theorems for mild solutions of the initial value problem are proved.</description><identifier>ISSN: 0001-4346</identifier><identifier>ISSN: 1067-9073</identifier><identifier>EISSN: 1573-8876</identifier><identifier>DOI: 10.1134/S0001434624030088</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>14/34 ; 639/766/189 ; 639/766/530 ; 639/766/747 ; Banach spaces ; Boundary value problems ; Existence theorems ; Fixed points (mathematics) ; Inclusions ; Mathematics ; Mathematics and Statistics ; Operators (mathematics)</subject><ispartof>Mathematical Notes, 2024-04, Vol.115 (3-4), p.358-370</ispartof><rights>Pleiades Publishing, Ltd. 2024</rights><rights>Pleiades Publishing, Ltd. 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-63a5f3e8296f97882e31e04dbdeba75e6b57a56e112d8876692001c196f4c8393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0001434624030088$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0001434624030088$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Obukhovskii, V. V.</creatorcontrib><creatorcontrib>Petrosyan, G. G.</creatorcontrib><creatorcontrib>Soroka, M. S.</creatorcontrib><title>On an Initial Value Problem for Nonconvex-Valued Fractional Differential Inclusions in a Banach Space</title><title>Mathematical Notes</title><addtitle>Math Notes</addtitle><description>Based on fixed point theory for condensing operators, an initial value problem for semilinear differential inclusions of fractional order in Banach spaces is studied. It is assumed that the linear part of the inclusion generates a family of cosine operator functions and the nonlinear part is a multivalued map with nonconvex values. Local and global existence theorems for mild solutions of the initial value problem are proved.</description><subject>14/34</subject><subject>639/766/189</subject><subject>639/766/530</subject><subject>639/766/747</subject><subject>Banach spaces</subject><subject>Boundary value problems</subject><subject>Existence theorems</subject><subject>Fixed points (mathematics)</subject><subject>Inclusions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><issn>0001-4346</issn><issn>1067-9073</issn><issn>1573-8876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kFFLwzAUhYMoOKc_wLeAz9WkaZP0UafTwXDC1NeSpjfa0SUzaYf-e9NN8EF8ulzO-Q73XITOKbmklGVXS0IIzVjG04wwQqQ8QCOaC5ZIKfghGg1yMujH6CSEVdwop2SEYGGxsnhmm65RLX5VbQ_4ybuqhTU2zuNHZ7WzW_hMdlqNp17prnE2um8bY8CD3aEzq9s-RCHgJmbiG2WVfsfLjdJwio6MagOc_cwxepnePU8ekvnifja5nieaFrJLOFO5YSDTgptCSJkCo0CyuqqhUiIHXuVC5RwoTeuhFy_SWCSy3GRasoKN0cU-d-PdRw-hK1eu9_HUUDIieCpyzmV00b1LexeCB1NufLNW_qukpBy-Wf75ZmTSPROi176B_03-H_oGQhp1DQ</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Obukhovskii, V. V.</creator><creator>Petrosyan, G. G.</creator><creator>Soroka, M. S.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240401</creationdate><title>On an Initial Value Problem for Nonconvex-Valued Fractional Differential Inclusions in a Banach Space</title><author>Obukhovskii, V. V. ; Petrosyan, G. G. ; Soroka, M. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-63a5f3e8296f97882e31e04dbdeba75e6b57a56e112d8876692001c196f4c8393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>14/34</topic><topic>639/766/189</topic><topic>639/766/530</topic><topic>639/766/747</topic><topic>Banach spaces</topic><topic>Boundary value problems</topic><topic>Existence theorems</topic><topic>Fixed points (mathematics)</topic><topic>Inclusions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Obukhovskii, V. V.</creatorcontrib><creatorcontrib>Petrosyan, G. G.</creatorcontrib><creatorcontrib>Soroka, M. S.</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematical Notes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Obukhovskii, V. V.</au><au>Petrosyan, G. G.</au><au>Soroka, M. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On an Initial Value Problem for Nonconvex-Valued Fractional Differential Inclusions in a Banach Space</atitle><jtitle>Mathematical Notes</jtitle><stitle>Math Notes</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>115</volume><issue>3-4</issue><spage>358</spage><epage>370</epage><pages>358-370</pages><issn>0001-4346</issn><issn>1067-9073</issn><eissn>1573-8876</eissn><abstract>Based on fixed point theory for condensing operators, an initial value problem for semilinear differential inclusions of fractional order in Banach spaces is studied. It is assumed that the linear part of the inclusion generates a family of cosine operator functions and the nonlinear part is a multivalued map with nonconvex values. Local and global existence theorems for mild solutions of the initial value problem are proved.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0001434624030088</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4346
ispartof Mathematical Notes, 2024-04, Vol.115 (3-4), p.358-370
issn 0001-4346
1067-9073
1573-8876
language eng
recordid cdi_proquest_journals_3076275668
source Springer Nature - Complete Springer Journals
subjects 14/34
639/766/189
639/766/530
639/766/747
Banach spaces
Boundary value problems
Existence theorems
Fixed points (mathematics)
Inclusions
Mathematics
Mathematics and Statistics
Operators (mathematics)
title On an Initial Value Problem for Nonconvex-Valued Fractional Differential Inclusions in a Banach Space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A55%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20an%20Initial%20Value%20Problem%20for%20Nonconvex-Valued%20Fractional%20Differential%20Inclusions%20in%20a%20Banach%20Space&rft.jtitle=Mathematical%20Notes&rft.au=Obukhovskii,%20V.%20V.&rft.date=2024-04-01&rft.volume=115&rft.issue=3-4&rft.spage=358&rft.epage=370&rft.pages=358-370&rft.issn=0001-4346&rft.eissn=1573-8876&rft_id=info:doi/10.1134/S0001434624030088&rft_dat=%3Cproquest_cross%3E3076275668%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3076275668&rft_id=info:pmid/&rfr_iscdi=true