Detecting causality with symplectic quandles

We investigate the capability of symplectic quandles to detect causality for (2+1)-dimensional globally hyperbolic spacetimes (X). Allen and Swenberg showed that the Alexander–Conway polynomial is insufficient to distinguish connected sum of two Hopf links from the links in the family of Allen–Swenb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Letters in mathematical physics 2024-05, Vol.114 (3), Article 63
1. Verfasser: Jain, Ayush
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the capability of symplectic quandles to detect causality for (2+1)-dimensional globally hyperbolic spacetimes (X). Allen and Swenberg showed that the Alexander–Conway polynomial is insufficient to distinguish connected sum of two Hopf links from the links in the family of Allen–Swenberg 2-sky like links, suggesting that it cannot always detect causality in X. We find that symplectic quandles, combined with Alexander–Conway polynomial, can distinguish these two types of links, thereby suggesting their ability to detect causality in X. The fact that symplectic quandles can capture causality in the Allen–Swenberg example is intriguing since the theorem of Chernov and Nemirovski, which states that Legendrian linking equals causality, is proved using Contact Geometry methods.
ISSN:1573-0530
0377-9017
1573-0530
DOI:10.1007/s11005-024-01808-w