4‐Phenylthiosemicarbazide Molecular Additive Engineering for Wide‐Bandgap Sn Halide Perovskite Solar Cells with a Record Efficiency Over 12.2

The utilization of wide bandgap (WBG) tin halide perovskites (Sn‐HPs) offers an environmentally friendly alternative for multi‐junction Sn‐HP photovoltaics. Nonetheless, rapid crystallization leads to suboptimal film morphology and substantial creation of defect states, which undermine device effici...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2024-07, Vol.14 (25), p.n/a
Hauptverfasser: Pandey, Padmini, Cho, SungWon, Bahadur, Jitendra, Yoon, Saemon, Oh, Chang‐Mok, Hwang, In‐Wook, Song, Hochan, Choi, Hyosung, Hayase, Shuzi, Cho, Jung Sang, Kang, Dong‐Won
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 25
container_start_page
container_title Advanced energy materials
container_volume 14
creator Pandey, Padmini
Cho, SungWon
Bahadur, Jitendra
Yoon, Saemon
Oh, Chang‐Mok
Hwang, In‐Wook
Song, Hochan
Choi, Hyosung
Hayase, Shuzi
Cho, Jung Sang
Kang, Dong‐Won
description The utilization of wide bandgap (WBG) tin halide perovskites (Sn‐HPs) offers an environmentally friendly alternative for multi‐junction Sn‐HP photovoltaics. Nonetheless, rapid crystallization leads to suboptimal film morphology and substantial creation of defect states, which undermine device efficiency. This study introduces 4‐Phenylthiosemicarbazide (4PTSC) as an additive to achieve a densely packed Sn‐HP film with fewer imperfections. The strong chemical coordination between SnI2 and the functional groups S═C─N (Sn···S═C─N), NH2, and phenyl conjugation enhances solution stability and supports the delay of perovskite crystallization through adduct formation. This process yields pinhole‐free films with preferred grain growth. 4PTSC acts as a strong coordination complex and a reducing agent to passivate uncoordinated Sn2+ and halide ions and reduce the formation of SnI4, thereby reducing defect formation. The π‐conjugated phenyl ring in the 4PTSC facilitates the preferred crystal growth orientation of perovskite grains. Furthermore, the hydrophobic nature of 4PTSC mitigates Sn2+ oxidation by repelling moisture, enhancing stability. The open circuit voltage significantly increased from 0.78 to 0.94 V, resulting in achieving the champion efficiency of 12.22% (certified 11.70%), surpassing all previously reported efficiencies for WBG Sn halide perovskite solar cells. Additionally, the unencapsulated 4PTSC‐1.0 device maintained outstanding stability over 1200 h under ambient atmospheric conditions. A novel multifunctional additive 4‐Phenylthiosemicarbazide (4PTSC) effectively regulated the crystal growth process in Sn perovskite, strong chemical interactions of 4PTSC with uncoordinated Sn2+ eliminated defects, suppressed non‐radiative recombinations, and controlled oxidation. Sn wideband gap perovskite solar cells realize the record highest efficiency of 12.22% for the champion device, with low open circuit voltage loss and almost negligible hysteresis.
doi_str_mv 10.1002/aenm.202401188
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3076112420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3076112420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2428-80c6fd43dda72b6a265483a99cbb0fce122f2153d64b13d07de072efdd1fec1c3</originalsourceid><addsrcrecordid>eNqFkM1OAjEURidGEwmydd3ENdg_hmGJBMUEhIjG5aTT3kJxaLEdILjyEfQVfRJngsGld3Pv4pzvJl8UXRLcIhjTawF21aKYckxIkpxENRIT3owTjk-PN6PnUSOEJS6HdwlmrBZ98e-Pz-kC7D4vFsYFWBkpfCbejQI0djnITS486illCrMFNLBzYwG8sXOknUcvJVcm3Air5mKNZhYNRV65U_BuG15NAWjmqog-5HlAO1MskECPIJ1XaKC1kQas3KPJFjwitEUvojMt8gCN312Pnm8HT_1hczS5u-_3Rk1JOU2aCZaxVpwpJTo0iwWN2zxhotuVWYa1BEKppqTNVMwzwhTuKMAdClopokESyerR1SF37d3bBkKRLt3G2_JlynAnJqR8g0uqdaCkdyF40Onam5Xw-5TgtGo-rZpPj82XQvcg7EwO-3_otDd4GP-5P7OIisI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3076112420</pqid></control><display><type>article</type><title>4‐Phenylthiosemicarbazide Molecular Additive Engineering for Wide‐Bandgap Sn Halide Perovskite Solar Cells with a Record Efficiency Over 12.2</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Pandey, Padmini ; Cho, SungWon ; Bahadur, Jitendra ; Yoon, Saemon ; Oh, Chang‐Mok ; Hwang, In‐Wook ; Song, Hochan ; Choi, Hyosung ; Hayase, Shuzi ; Cho, Jung Sang ; Kang, Dong‐Won</creator><creatorcontrib>Pandey, Padmini ; Cho, SungWon ; Bahadur, Jitendra ; Yoon, Saemon ; Oh, Chang‐Mok ; Hwang, In‐Wook ; Song, Hochan ; Choi, Hyosung ; Hayase, Shuzi ; Cho, Jung Sang ; Kang, Dong‐Won</creatorcontrib><description>The utilization of wide bandgap (WBG) tin halide perovskites (Sn‐HPs) offers an environmentally friendly alternative for multi‐junction Sn‐HP photovoltaics. Nonetheless, rapid crystallization leads to suboptimal film morphology and substantial creation of defect states, which undermine device efficiency. This study introduces 4‐Phenylthiosemicarbazide (4PTSC) as an additive to achieve a densely packed Sn‐HP film with fewer imperfections. The strong chemical coordination between SnI2 and the functional groups S═C─N (Sn···S═C─N), NH2, and phenyl conjugation enhances solution stability and supports the delay of perovskite crystallization through adduct formation. This process yields pinhole‐free films with preferred grain growth. 4PTSC acts as a strong coordination complex and a reducing agent to passivate uncoordinated Sn2+ and halide ions and reduce the formation of SnI4, thereby reducing defect formation. The π‐conjugated phenyl ring in the 4PTSC facilitates the preferred crystal growth orientation of perovskite grains. Furthermore, the hydrophobic nature of 4PTSC mitigates Sn2+ oxidation by repelling moisture, enhancing stability. The open circuit voltage significantly increased from 0.78 to 0.94 V, resulting in achieving the champion efficiency of 12.22% (certified 11.70%), surpassing all previously reported efficiencies for WBG Sn halide perovskite solar cells. Additionally, the unencapsulated 4PTSC‐1.0 device maintained outstanding stability over 1200 h under ambient atmospheric conditions. A novel multifunctional additive 4‐Phenylthiosemicarbazide (4PTSC) effectively regulated the crystal growth process in Sn perovskite, strong chemical interactions of 4PTSC with uncoordinated Sn2+ eliminated defects, suppressed non‐radiative recombinations, and controlled oxidation. Sn wideband gap perovskite solar cells realize the record highest efficiency of 12.22% for the champion device, with low open circuit voltage loss and almost negligible hysteresis.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202401188</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>4PTSC ; chemical coordination ; Conjugation ; Coordination compounds ; Crystal defects ; Crystal growth ; Crystallization ; Efficiency ; Energy gap ; Functional groups ; Grain growth ; Open circuit voltage ; Oxidation ; perovskite solar cell ; Perovskites ; Photovoltaic cells ; Pinholes ; Reducing agents ; Sn halide perovskite ; Solar cells ; Stability ; Tin</subject><ispartof>Advanced energy materials, 2024-07, Vol.14 (25), p.n/a</ispartof><rights>2024 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2428-80c6fd43dda72b6a265483a99cbb0fce122f2153d64b13d07de072efdd1fec1c3</cites><orcidid>0000-0002-3032-6496 ; 0000-0001-6268-0150 ; 0000-0001-9336-103X ; 0000-0003-3614-3102 ; 0000-0003-0986-6962 ; 0000-0002-4818-8108 ; 0000-0003-4573-9012 ; 0000-0002-0756-4808</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202401188$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202401188$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Pandey, Padmini</creatorcontrib><creatorcontrib>Cho, SungWon</creatorcontrib><creatorcontrib>Bahadur, Jitendra</creatorcontrib><creatorcontrib>Yoon, Saemon</creatorcontrib><creatorcontrib>Oh, Chang‐Mok</creatorcontrib><creatorcontrib>Hwang, In‐Wook</creatorcontrib><creatorcontrib>Song, Hochan</creatorcontrib><creatorcontrib>Choi, Hyosung</creatorcontrib><creatorcontrib>Hayase, Shuzi</creatorcontrib><creatorcontrib>Cho, Jung Sang</creatorcontrib><creatorcontrib>Kang, Dong‐Won</creatorcontrib><title>4‐Phenylthiosemicarbazide Molecular Additive Engineering for Wide‐Bandgap Sn Halide Perovskite Solar Cells with a Record Efficiency Over 12.2</title><title>Advanced energy materials</title><description>The utilization of wide bandgap (WBG) tin halide perovskites (Sn‐HPs) offers an environmentally friendly alternative for multi‐junction Sn‐HP photovoltaics. Nonetheless, rapid crystallization leads to suboptimal film morphology and substantial creation of defect states, which undermine device efficiency. This study introduces 4‐Phenylthiosemicarbazide (4PTSC) as an additive to achieve a densely packed Sn‐HP film with fewer imperfections. The strong chemical coordination between SnI2 and the functional groups S═C─N (Sn···S═C─N), NH2, and phenyl conjugation enhances solution stability and supports the delay of perovskite crystallization through adduct formation. This process yields pinhole‐free films with preferred grain growth. 4PTSC acts as a strong coordination complex and a reducing agent to passivate uncoordinated Sn2+ and halide ions and reduce the formation of SnI4, thereby reducing defect formation. The π‐conjugated phenyl ring in the 4PTSC facilitates the preferred crystal growth orientation of perovskite grains. Furthermore, the hydrophobic nature of 4PTSC mitigates Sn2+ oxidation by repelling moisture, enhancing stability. The open circuit voltage significantly increased from 0.78 to 0.94 V, resulting in achieving the champion efficiency of 12.22% (certified 11.70%), surpassing all previously reported efficiencies for WBG Sn halide perovskite solar cells. Additionally, the unencapsulated 4PTSC‐1.0 device maintained outstanding stability over 1200 h under ambient atmospheric conditions. A novel multifunctional additive 4‐Phenylthiosemicarbazide (4PTSC) effectively regulated the crystal growth process in Sn perovskite, strong chemical interactions of 4PTSC with uncoordinated Sn2+ eliminated defects, suppressed non‐radiative recombinations, and controlled oxidation. Sn wideband gap perovskite solar cells realize the record highest efficiency of 12.22% for the champion device, with low open circuit voltage loss and almost negligible hysteresis.</description><subject>4PTSC</subject><subject>chemical coordination</subject><subject>Conjugation</subject><subject>Coordination compounds</subject><subject>Crystal defects</subject><subject>Crystal growth</subject><subject>Crystallization</subject><subject>Efficiency</subject><subject>Energy gap</subject><subject>Functional groups</subject><subject>Grain growth</subject><subject>Open circuit voltage</subject><subject>Oxidation</subject><subject>perovskite solar cell</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Pinholes</subject><subject>Reducing agents</subject><subject>Sn halide perovskite</subject><subject>Solar cells</subject><subject>Stability</subject><subject>Tin</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkM1OAjEURidGEwmydd3ENdg_hmGJBMUEhIjG5aTT3kJxaLEdILjyEfQVfRJngsGld3Pv4pzvJl8UXRLcIhjTawF21aKYckxIkpxENRIT3owTjk-PN6PnUSOEJS6HdwlmrBZ98e-Pz-kC7D4vFsYFWBkpfCbejQI0djnITS486illCrMFNLBzYwG8sXOknUcvJVcm3Air5mKNZhYNRV65U_BuG15NAWjmqog-5HlAO1MskECPIJ1XaKC1kQas3KPJFjwitEUvojMt8gCN312Pnm8HT_1hczS5u-_3Rk1JOU2aCZaxVpwpJTo0iwWN2zxhotuVWYa1BEKppqTNVMwzwhTuKMAdClopokESyerR1SF37d3bBkKRLt3G2_JlynAnJqR8g0uqdaCkdyF40Onam5Xw-5TgtGo-rZpPj82XQvcg7EwO-3_otDd4GP-5P7OIisI</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Pandey, Padmini</creator><creator>Cho, SungWon</creator><creator>Bahadur, Jitendra</creator><creator>Yoon, Saemon</creator><creator>Oh, Chang‐Mok</creator><creator>Hwang, In‐Wook</creator><creator>Song, Hochan</creator><creator>Choi, Hyosung</creator><creator>Hayase, Shuzi</creator><creator>Cho, Jung Sang</creator><creator>Kang, Dong‐Won</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3032-6496</orcidid><orcidid>https://orcid.org/0000-0001-6268-0150</orcidid><orcidid>https://orcid.org/0000-0001-9336-103X</orcidid><orcidid>https://orcid.org/0000-0003-3614-3102</orcidid><orcidid>https://orcid.org/0000-0003-0986-6962</orcidid><orcidid>https://orcid.org/0000-0002-4818-8108</orcidid><orcidid>https://orcid.org/0000-0003-4573-9012</orcidid><orcidid>https://orcid.org/0000-0002-0756-4808</orcidid></search><sort><creationdate>20240701</creationdate><title>4‐Phenylthiosemicarbazide Molecular Additive Engineering for Wide‐Bandgap Sn Halide Perovskite Solar Cells with a Record Efficiency Over 12.2</title><author>Pandey, Padmini ; Cho, SungWon ; Bahadur, Jitendra ; Yoon, Saemon ; Oh, Chang‐Mok ; Hwang, In‐Wook ; Song, Hochan ; Choi, Hyosung ; Hayase, Shuzi ; Cho, Jung Sang ; Kang, Dong‐Won</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2428-80c6fd43dda72b6a265483a99cbb0fce122f2153d64b13d07de072efdd1fec1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>4PTSC</topic><topic>chemical coordination</topic><topic>Conjugation</topic><topic>Coordination compounds</topic><topic>Crystal defects</topic><topic>Crystal growth</topic><topic>Crystallization</topic><topic>Efficiency</topic><topic>Energy gap</topic><topic>Functional groups</topic><topic>Grain growth</topic><topic>Open circuit voltage</topic><topic>Oxidation</topic><topic>perovskite solar cell</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Pinholes</topic><topic>Reducing agents</topic><topic>Sn halide perovskite</topic><topic>Solar cells</topic><topic>Stability</topic><topic>Tin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pandey, Padmini</creatorcontrib><creatorcontrib>Cho, SungWon</creatorcontrib><creatorcontrib>Bahadur, Jitendra</creatorcontrib><creatorcontrib>Yoon, Saemon</creatorcontrib><creatorcontrib>Oh, Chang‐Mok</creatorcontrib><creatorcontrib>Hwang, In‐Wook</creatorcontrib><creatorcontrib>Song, Hochan</creatorcontrib><creatorcontrib>Choi, Hyosung</creatorcontrib><creatorcontrib>Hayase, Shuzi</creatorcontrib><creatorcontrib>Cho, Jung Sang</creatorcontrib><creatorcontrib>Kang, Dong‐Won</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pandey, Padmini</au><au>Cho, SungWon</au><au>Bahadur, Jitendra</au><au>Yoon, Saemon</au><au>Oh, Chang‐Mok</au><au>Hwang, In‐Wook</au><au>Song, Hochan</au><au>Choi, Hyosung</au><au>Hayase, Shuzi</au><au>Cho, Jung Sang</au><au>Kang, Dong‐Won</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>4‐Phenylthiosemicarbazide Molecular Additive Engineering for Wide‐Bandgap Sn Halide Perovskite Solar Cells with a Record Efficiency Over 12.2</atitle><jtitle>Advanced energy materials</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>14</volume><issue>25</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>The utilization of wide bandgap (WBG) tin halide perovskites (Sn‐HPs) offers an environmentally friendly alternative for multi‐junction Sn‐HP photovoltaics. Nonetheless, rapid crystallization leads to suboptimal film morphology and substantial creation of defect states, which undermine device efficiency. This study introduces 4‐Phenylthiosemicarbazide (4PTSC) as an additive to achieve a densely packed Sn‐HP film with fewer imperfections. The strong chemical coordination between SnI2 and the functional groups S═C─N (Sn···S═C─N), NH2, and phenyl conjugation enhances solution stability and supports the delay of perovskite crystallization through adduct formation. This process yields pinhole‐free films with preferred grain growth. 4PTSC acts as a strong coordination complex and a reducing agent to passivate uncoordinated Sn2+ and halide ions and reduce the formation of SnI4, thereby reducing defect formation. The π‐conjugated phenyl ring in the 4PTSC facilitates the preferred crystal growth orientation of perovskite grains. Furthermore, the hydrophobic nature of 4PTSC mitigates Sn2+ oxidation by repelling moisture, enhancing stability. The open circuit voltage significantly increased from 0.78 to 0.94 V, resulting in achieving the champion efficiency of 12.22% (certified 11.70%), surpassing all previously reported efficiencies for WBG Sn halide perovskite solar cells. Additionally, the unencapsulated 4PTSC‐1.0 device maintained outstanding stability over 1200 h under ambient atmospheric conditions. A novel multifunctional additive 4‐Phenylthiosemicarbazide (4PTSC) effectively regulated the crystal growth process in Sn perovskite, strong chemical interactions of 4PTSC with uncoordinated Sn2+ eliminated defects, suppressed non‐radiative recombinations, and controlled oxidation. Sn wideband gap perovskite solar cells realize the record highest efficiency of 12.22% for the champion device, with low open circuit voltage loss and almost negligible hysteresis.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202401188</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3032-6496</orcidid><orcidid>https://orcid.org/0000-0001-6268-0150</orcidid><orcidid>https://orcid.org/0000-0001-9336-103X</orcidid><orcidid>https://orcid.org/0000-0003-3614-3102</orcidid><orcidid>https://orcid.org/0000-0003-0986-6962</orcidid><orcidid>https://orcid.org/0000-0002-4818-8108</orcidid><orcidid>https://orcid.org/0000-0003-4573-9012</orcidid><orcidid>https://orcid.org/0000-0002-0756-4808</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2024-07, Vol.14 (25), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_3076112420
source Wiley Online Library Journals Frontfile Complete
subjects 4PTSC
chemical coordination
Conjugation
Coordination compounds
Crystal defects
Crystal growth
Crystallization
Efficiency
Energy gap
Functional groups
Grain growth
Open circuit voltage
Oxidation
perovskite solar cell
Perovskites
Photovoltaic cells
Pinholes
Reducing agents
Sn halide perovskite
Solar cells
Stability
Tin
title 4‐Phenylthiosemicarbazide Molecular Additive Engineering for Wide‐Bandgap Sn Halide Perovskite Solar Cells with a Record Efficiency Over 12.2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A23%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=4%E2%80%90Phenylthiosemicarbazide%20Molecular%20Additive%20Engineering%20for%20Wide%E2%80%90Bandgap%20Sn%20Halide%20Perovskite%20Solar%20Cells%20with%20a%20Record%20Efficiency%20Over%2012.2&rft.jtitle=Advanced%20energy%20materials&rft.au=Pandey,%20Padmini&rft.date=2024-07-01&rft.volume=14&rft.issue=25&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202401188&rft_dat=%3Cproquest_cross%3E3076112420%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3076112420&rft_id=info:pmid/&rfr_iscdi=true