Multimodal image registration techniques: a comprehensive survey
This manuscript presents a review of state-of-the-art techniques proposed in the literature for multimodal image registration, addressing instances where images from different modalities need to be precisely aligned in the same reference system. This scenario arises when the images to be registered...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2024-01, Vol.83 (23), p.63919-63947 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 63947 |
---|---|
container_issue | 23 |
container_start_page | 63919 |
container_title | Multimedia tools and applications |
container_volume | 83 |
creator | Velesaca, Henry O. Bastidas, Gisel Rouhani, Mohammad Sappa, Angel D. |
description | This manuscript presents a review of state-of-the-art techniques proposed in the literature for multimodal image registration, addressing instances where images from different modalities need to be precisely aligned in the same reference system. This scenario arises when the images to be registered come from different modalities, among the visible and thermal spectral bands, 3D-RGB, or flash-no flash, or NIR-visible. The review spans different techniques from classical approaches to more modern ones based on deep learning, aiming to highlight the particularities required at each step in the registration pipeline when dealing with multimodal images. It is noteworthy that medical images are excluded from this review due to their specific characteristics, including the use of both active and passive sensors or the non-rigid nature of the body contained in the image. |
doi_str_mv | 10.1007/s11042-023-17991-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3076099533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3076099533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-9e391a2f04fcfc8ec532dbcfba998013fb294d3bcacbcf532afc7936def6f32b3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wisTbYniSuWYEqXlIRG1hbjjNOUzUP7KRS_x6XIMGK1Yxm7p3HIeSSs2vOmLwJnLNUUCaAcqkUp-KIzHgmgUop-PGf_JSchbBhjOeZSGfk7nXcDnXTlWab1I2pMPFY1WHwZqi7NhnQrtv6c8Rwm5jEdk3vcY1tqHeYhNHvcH9OTpzZBrz4iXPy8fjwvnymq7enl-X9ilrgaqAKQXEjHEuddXaBNgNRFtYVRqkF4-AKodISCmtsrMamcVYqyEt0uQNRwJxcTXN73x3uGfSmG30bV2pgMmdKZQBRJSaV9V0IHp3ufXzL7zVn-kBKT6R0JKW_SWkRTTCZQhS3Ffrf0f-4vgDejW17</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3076099533</pqid></control><display><type>article</type><title>Multimodal image registration techniques: a comprehensive survey</title><source>SpringerLink Journals - AutoHoldings</source><creator>Velesaca, Henry O. ; Bastidas, Gisel ; Rouhani, Mohammad ; Sappa, Angel D.</creator><creatorcontrib>Velesaca, Henry O. ; Bastidas, Gisel ; Rouhani, Mohammad ; Sappa, Angel D.</creatorcontrib><description>This manuscript presents a review of state-of-the-art techniques proposed in the literature for multimodal image registration, addressing instances where images from different modalities need to be precisely aligned in the same reference system. This scenario arises when the images to be registered come from different modalities, among the visible and thermal spectral bands, 3D-RGB, or flash-no flash, or NIR-visible. The review spans different techniques from classical approaches to more modern ones based on deep learning, aiming to highlight the particularities required at each step in the registration pipeline when dealing with multimodal images. It is noteworthy that medical images are excluded from this review due to their specific characteristics, including the use of both active and passive sensors or the non-rigid nature of the body contained in the image.</description><identifier>ISSN: 1573-7721</identifier><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-023-17991-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Deep learning ; Image registration ; Information sources ; Medical imaging ; Multimedia ; Multimedia Information Systems ; Reference systems ; Registration ; Remote sensing ; Sensors ; Special Purpose and Application-Based Systems ; Spectral bands ; State-of-the-art reviews ; Track 6: Computer Vision for Multimedia Applications</subject><ispartof>Multimedia tools and applications, 2024-01, Vol.83 (23), p.63919-63947</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-9e391a2f04fcfc8ec532dbcfba998013fb294d3bcacbcf532afc7936def6f32b3</citedby><cites>FETCH-LOGICAL-c319t-9e391a2f04fcfc8ec532dbcfba998013fb294d3bcacbcf532afc7936def6f32b3</cites><orcidid>0000-0002-6070-7193 ; 0000-0003-2468-0031 ; 0000-0003-1946-4879 ; 0000-0003-0266-2465</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-023-17991-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-023-17991-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Velesaca, Henry O.</creatorcontrib><creatorcontrib>Bastidas, Gisel</creatorcontrib><creatorcontrib>Rouhani, Mohammad</creatorcontrib><creatorcontrib>Sappa, Angel D.</creatorcontrib><title>Multimodal image registration techniques: a comprehensive survey</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>This manuscript presents a review of state-of-the-art techniques proposed in the literature for multimodal image registration, addressing instances where images from different modalities need to be precisely aligned in the same reference system. This scenario arises when the images to be registered come from different modalities, among the visible and thermal spectral bands, 3D-RGB, or flash-no flash, or NIR-visible. The review spans different techniques from classical approaches to more modern ones based on deep learning, aiming to highlight the particularities required at each step in the registration pipeline when dealing with multimodal images. It is noteworthy that medical images are excluded from this review due to their specific characteristics, including the use of both active and passive sensors or the non-rigid nature of the body contained in the image.</description><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Deep learning</subject><subject>Image registration</subject><subject>Information sources</subject><subject>Medical imaging</subject><subject>Multimedia</subject><subject>Multimedia Information Systems</subject><subject>Reference systems</subject><subject>Registration</subject><subject>Remote sensing</subject><subject>Sensors</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Spectral bands</subject><subject>State-of-the-art reviews</subject><subject>Track 6: Computer Vision for Multimedia Applications</subject><issn>1573-7721</issn><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wisTbYniSuWYEqXlIRG1hbjjNOUzUP7KRS_x6XIMGK1Yxm7p3HIeSSs2vOmLwJnLNUUCaAcqkUp-KIzHgmgUop-PGf_JSchbBhjOeZSGfk7nXcDnXTlWab1I2pMPFY1WHwZqi7NhnQrtv6c8Rwm5jEdk3vcY1tqHeYhNHvcH9OTpzZBrz4iXPy8fjwvnymq7enl-X9ilrgaqAKQXEjHEuddXaBNgNRFtYVRqkF4-AKodISCmtsrMamcVYqyEt0uQNRwJxcTXN73x3uGfSmG30bV2pgMmdKZQBRJSaV9V0IHp3ufXzL7zVn-kBKT6R0JKW_SWkRTTCZQhS3Ffrf0f-4vgDejW17</recordid><startdate>20240106</startdate><enddate>20240106</enddate><creator>Velesaca, Henry O.</creator><creator>Bastidas, Gisel</creator><creator>Rouhani, Mohammad</creator><creator>Sappa, Angel D.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6070-7193</orcidid><orcidid>https://orcid.org/0000-0003-2468-0031</orcidid><orcidid>https://orcid.org/0000-0003-1946-4879</orcidid><orcidid>https://orcid.org/0000-0003-0266-2465</orcidid></search><sort><creationdate>20240106</creationdate><title>Multimodal image registration techniques: a comprehensive survey</title><author>Velesaca, Henry O. ; Bastidas, Gisel ; Rouhani, Mohammad ; Sappa, Angel D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-9e391a2f04fcfc8ec532dbcfba998013fb294d3bcacbcf532afc7936def6f32b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Deep learning</topic><topic>Image registration</topic><topic>Information sources</topic><topic>Medical imaging</topic><topic>Multimedia</topic><topic>Multimedia Information Systems</topic><topic>Reference systems</topic><topic>Registration</topic><topic>Remote sensing</topic><topic>Sensors</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Spectral bands</topic><topic>State-of-the-art reviews</topic><topic>Track 6: Computer Vision for Multimedia Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Velesaca, Henry O.</creatorcontrib><creatorcontrib>Bastidas, Gisel</creatorcontrib><creatorcontrib>Rouhani, Mohammad</creatorcontrib><creatorcontrib>Sappa, Angel D.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Velesaca, Henry O.</au><au>Bastidas, Gisel</au><au>Rouhani, Mohammad</au><au>Sappa, Angel D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multimodal image registration techniques: a comprehensive survey</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2024-01-06</date><risdate>2024</risdate><volume>83</volume><issue>23</issue><spage>63919</spage><epage>63947</epage><pages>63919-63947</pages><issn>1573-7721</issn><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>This manuscript presents a review of state-of-the-art techniques proposed in the literature for multimodal image registration, addressing instances where images from different modalities need to be precisely aligned in the same reference system. This scenario arises when the images to be registered come from different modalities, among the visible and thermal spectral bands, 3D-RGB, or flash-no flash, or NIR-visible. The review spans different techniques from classical approaches to more modern ones based on deep learning, aiming to highlight the particularities required at each step in the registration pipeline when dealing with multimodal images. It is noteworthy that medical images are excluded from this review due to their specific characteristics, including the use of both active and passive sensors or the non-rigid nature of the body contained in the image.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-023-17991-2</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-6070-7193</orcidid><orcidid>https://orcid.org/0000-0003-2468-0031</orcidid><orcidid>https://orcid.org/0000-0003-1946-4879</orcidid><orcidid>https://orcid.org/0000-0003-0266-2465</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1573-7721 |
ispartof | Multimedia tools and applications, 2024-01, Vol.83 (23), p.63919-63947 |
issn | 1573-7721 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_journals_3076099533 |
source | SpringerLink Journals - AutoHoldings |
subjects | Computer Communication Networks Computer Science Data Structures and Information Theory Deep learning Image registration Information sources Medical imaging Multimedia Multimedia Information Systems Reference systems Registration Remote sensing Sensors Special Purpose and Application-Based Systems Spectral bands State-of-the-art reviews Track 6: Computer Vision for Multimedia Applications |
title | Multimodal image registration techniques: a comprehensive survey |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T10%3A36%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multimodal%20image%20registration%20techniques:%20a%20comprehensive%20survey&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Velesaca,%20Henry%20O.&rft.date=2024-01-06&rft.volume=83&rft.issue=23&rft.spage=63919&rft.epage=63947&rft.pages=63919-63947&rft.issn=1573-7721&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-023-17991-2&rft_dat=%3Cproquest_cross%3E3076099533%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3076099533&rft_id=info:pmid/&rfr_iscdi=true |