Multimodal image registration techniques: a comprehensive survey

This manuscript presents a review of state-of-the-art techniques proposed in the literature for multimodal image registration, addressing instances where images from different modalities need to be precisely aligned in the same reference system. This scenario arises when the images to be registered...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2024-01, Vol.83 (23), p.63919-63947
Hauptverfasser: Velesaca, Henry O., Bastidas, Gisel, Rouhani, Mohammad, Sappa, Angel D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 63947
container_issue 23
container_start_page 63919
container_title Multimedia tools and applications
container_volume 83
creator Velesaca, Henry O.
Bastidas, Gisel
Rouhani, Mohammad
Sappa, Angel D.
description This manuscript presents a review of state-of-the-art techniques proposed in the literature for multimodal image registration, addressing instances where images from different modalities need to be precisely aligned in the same reference system. This scenario arises when the images to be registered come from different modalities, among the visible and thermal spectral bands, 3D-RGB, or flash-no flash, or NIR-visible. The review spans different techniques from classical approaches to more modern ones based on deep learning, aiming to highlight the particularities required at each step in the registration pipeline when dealing with multimodal images. It is noteworthy that medical images are excluded from this review due to their specific characteristics, including the use of both active and passive sensors or the non-rigid nature of the body contained in the image.
doi_str_mv 10.1007/s11042-023-17991-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3076099533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3076099533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-9e391a2f04fcfc8ec532dbcfba998013fb294d3bcacbcf532afc7936def6f32b3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wisTbYniSuWYEqXlIRG1hbjjNOUzUP7KRS_x6XIMGK1Yxm7p3HIeSSs2vOmLwJnLNUUCaAcqkUp-KIzHgmgUop-PGf_JSchbBhjOeZSGfk7nXcDnXTlWab1I2pMPFY1WHwZqi7NhnQrtv6c8Rwm5jEdk3vcY1tqHeYhNHvcH9OTpzZBrz4iXPy8fjwvnymq7enl-X9ilrgaqAKQXEjHEuddXaBNgNRFtYVRqkF4-AKodISCmtsrMamcVYqyEt0uQNRwJxcTXN73x3uGfSmG30bV2pgMmdKZQBRJSaV9V0IHp3ufXzL7zVn-kBKT6R0JKW_SWkRTTCZQhS3Ffrf0f-4vgDejW17</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3076099533</pqid></control><display><type>article</type><title>Multimodal image registration techniques: a comprehensive survey</title><source>SpringerLink Journals - AutoHoldings</source><creator>Velesaca, Henry O. ; Bastidas, Gisel ; Rouhani, Mohammad ; Sappa, Angel D.</creator><creatorcontrib>Velesaca, Henry O. ; Bastidas, Gisel ; Rouhani, Mohammad ; Sappa, Angel D.</creatorcontrib><description>This manuscript presents a review of state-of-the-art techniques proposed in the literature for multimodal image registration, addressing instances where images from different modalities need to be precisely aligned in the same reference system. This scenario arises when the images to be registered come from different modalities, among the visible and thermal spectral bands, 3D-RGB, or flash-no flash, or NIR-visible. The review spans different techniques from classical approaches to more modern ones based on deep learning, aiming to highlight the particularities required at each step in the registration pipeline when dealing with multimodal images. It is noteworthy that medical images are excluded from this review due to their specific characteristics, including the use of both active and passive sensors or the non-rigid nature of the body contained in the image.</description><identifier>ISSN: 1573-7721</identifier><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-023-17991-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Deep learning ; Image registration ; Information sources ; Medical imaging ; Multimedia ; Multimedia Information Systems ; Reference systems ; Registration ; Remote sensing ; Sensors ; Special Purpose and Application-Based Systems ; Spectral bands ; State-of-the-art reviews ; Track 6: Computer Vision for Multimedia Applications</subject><ispartof>Multimedia tools and applications, 2024-01, Vol.83 (23), p.63919-63947</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-9e391a2f04fcfc8ec532dbcfba998013fb294d3bcacbcf532afc7936def6f32b3</citedby><cites>FETCH-LOGICAL-c319t-9e391a2f04fcfc8ec532dbcfba998013fb294d3bcacbcf532afc7936def6f32b3</cites><orcidid>0000-0002-6070-7193 ; 0000-0003-2468-0031 ; 0000-0003-1946-4879 ; 0000-0003-0266-2465</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-023-17991-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-023-17991-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Velesaca, Henry O.</creatorcontrib><creatorcontrib>Bastidas, Gisel</creatorcontrib><creatorcontrib>Rouhani, Mohammad</creatorcontrib><creatorcontrib>Sappa, Angel D.</creatorcontrib><title>Multimodal image registration techniques: a comprehensive survey</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>This manuscript presents a review of state-of-the-art techniques proposed in the literature for multimodal image registration, addressing instances where images from different modalities need to be precisely aligned in the same reference system. This scenario arises when the images to be registered come from different modalities, among the visible and thermal spectral bands, 3D-RGB, or flash-no flash, or NIR-visible. The review spans different techniques from classical approaches to more modern ones based on deep learning, aiming to highlight the particularities required at each step in the registration pipeline when dealing with multimodal images. It is noteworthy that medical images are excluded from this review due to their specific characteristics, including the use of both active and passive sensors or the non-rigid nature of the body contained in the image.</description><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Deep learning</subject><subject>Image registration</subject><subject>Information sources</subject><subject>Medical imaging</subject><subject>Multimedia</subject><subject>Multimedia Information Systems</subject><subject>Reference systems</subject><subject>Registration</subject><subject>Remote sensing</subject><subject>Sensors</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Spectral bands</subject><subject>State-of-the-art reviews</subject><subject>Track 6: Computer Vision for Multimedia Applications</subject><issn>1573-7721</issn><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wisTbYniSuWYEqXlIRG1hbjjNOUzUP7KRS_x6XIMGK1Yxm7p3HIeSSs2vOmLwJnLNUUCaAcqkUp-KIzHgmgUop-PGf_JSchbBhjOeZSGfk7nXcDnXTlWab1I2pMPFY1WHwZqi7NhnQrtv6c8Rwm5jEdk3vcY1tqHeYhNHvcH9OTpzZBrz4iXPy8fjwvnymq7enl-X9ilrgaqAKQXEjHEuddXaBNgNRFtYVRqkF4-AKodISCmtsrMamcVYqyEt0uQNRwJxcTXN73x3uGfSmG30bV2pgMmdKZQBRJSaV9V0IHp3ufXzL7zVn-kBKT6R0JKW_SWkRTTCZQhS3Ffrf0f-4vgDejW17</recordid><startdate>20240106</startdate><enddate>20240106</enddate><creator>Velesaca, Henry O.</creator><creator>Bastidas, Gisel</creator><creator>Rouhani, Mohammad</creator><creator>Sappa, Angel D.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6070-7193</orcidid><orcidid>https://orcid.org/0000-0003-2468-0031</orcidid><orcidid>https://orcid.org/0000-0003-1946-4879</orcidid><orcidid>https://orcid.org/0000-0003-0266-2465</orcidid></search><sort><creationdate>20240106</creationdate><title>Multimodal image registration techniques: a comprehensive survey</title><author>Velesaca, Henry O. ; Bastidas, Gisel ; Rouhani, Mohammad ; Sappa, Angel D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-9e391a2f04fcfc8ec532dbcfba998013fb294d3bcacbcf532afc7936def6f32b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Deep learning</topic><topic>Image registration</topic><topic>Information sources</topic><topic>Medical imaging</topic><topic>Multimedia</topic><topic>Multimedia Information Systems</topic><topic>Reference systems</topic><topic>Registration</topic><topic>Remote sensing</topic><topic>Sensors</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Spectral bands</topic><topic>State-of-the-art reviews</topic><topic>Track 6: Computer Vision for Multimedia Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Velesaca, Henry O.</creatorcontrib><creatorcontrib>Bastidas, Gisel</creatorcontrib><creatorcontrib>Rouhani, Mohammad</creatorcontrib><creatorcontrib>Sappa, Angel D.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Velesaca, Henry O.</au><au>Bastidas, Gisel</au><au>Rouhani, Mohammad</au><au>Sappa, Angel D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multimodal image registration techniques: a comprehensive survey</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2024-01-06</date><risdate>2024</risdate><volume>83</volume><issue>23</issue><spage>63919</spage><epage>63947</epage><pages>63919-63947</pages><issn>1573-7721</issn><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>This manuscript presents a review of state-of-the-art techniques proposed in the literature for multimodal image registration, addressing instances where images from different modalities need to be precisely aligned in the same reference system. This scenario arises when the images to be registered come from different modalities, among the visible and thermal spectral bands, 3D-RGB, or flash-no flash, or NIR-visible. The review spans different techniques from classical approaches to more modern ones based on deep learning, aiming to highlight the particularities required at each step in the registration pipeline when dealing with multimodal images. It is noteworthy that medical images are excluded from this review due to their specific characteristics, including the use of both active and passive sensors or the non-rigid nature of the body contained in the image.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-023-17991-2</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-6070-7193</orcidid><orcidid>https://orcid.org/0000-0003-2468-0031</orcidid><orcidid>https://orcid.org/0000-0003-1946-4879</orcidid><orcidid>https://orcid.org/0000-0003-0266-2465</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1573-7721
ispartof Multimedia tools and applications, 2024-01, Vol.83 (23), p.63919-63947
issn 1573-7721
1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_3076099533
source SpringerLink Journals - AutoHoldings
subjects Computer Communication Networks
Computer Science
Data Structures and Information Theory
Deep learning
Image registration
Information sources
Medical imaging
Multimedia
Multimedia Information Systems
Reference systems
Registration
Remote sensing
Sensors
Special Purpose and Application-Based Systems
Spectral bands
State-of-the-art reviews
Track 6: Computer Vision for Multimedia Applications
title Multimodal image registration techniques: a comprehensive survey
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T10%3A36%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multimodal%20image%20registration%20techniques:%20a%20comprehensive%20survey&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Velesaca,%20Henry%20O.&rft.date=2024-01-06&rft.volume=83&rft.issue=23&rft.spage=63919&rft.epage=63947&rft.pages=63919-63947&rft.issn=1573-7721&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-023-17991-2&rft_dat=%3Cproquest_cross%3E3076099533%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3076099533&rft_id=info:pmid/&rfr_iscdi=true