Domain-independent detection of known anomalies

One persistent obstacle in industrial quality inspection is the detection of anomalies. In real-world use cases, two problems must be addressed: anomalous data is sparse and the same types of anomalies need to be detected on previously unseen objects. Current anomaly detection approaches can be trai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-07
Hauptverfasser: Bühler, Jonas, Fehrenbach, Jonas, Steinmann, Lucas, Nauck, Christian, Koulakis, Marios
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bühler, Jonas
Fehrenbach, Jonas
Steinmann, Lucas
Nauck, Christian
Koulakis, Marios
description One persistent obstacle in industrial quality inspection is the detection of anomalies. In real-world use cases, two problems must be addressed: anomalous data is sparse and the same types of anomalies need to be detected on previously unseen objects. Current anomaly detection approaches can be trained with sparse nominal data, whereas domain generalization approaches enable detecting objects in previously unseen domains. Utilizing those two observations, we introduce the hybrid task of domain generalization on sparse classes. To introduce an accompanying dataset for this task, we present a modification of the well-established MVTec AD dataset by generating three new datasets. In addition to applying existing methods for benchmark, we design two embedding-based approaches, Spatial Embedding MLP (SEMLP) and Labeled PatchCore. Overall, SEMLP achieves the best performance with an average image-level AUROC of 87.2 % vs. 80.4 % by MIRO. The new and openly available datasets allow for further research to improve industrial anomaly detection.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3075794438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3075794438</sourcerecordid><originalsourceid>FETCH-proquest_journals_30757944383</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQd8nPTczM083MS0ktSAUSeSUKKaklqcklmfl5CvlpCtl5-eV5Col5QGU5manFPAysaYk5xam8UJqbQdnNNcTZQ7egKL-wNLW4JD4rv7QoDygVb2xgbmpuaWJibGFMnCoAWc0zJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075794438</pqid></control><display><type>article</type><title>Domain-independent detection of known anomalies</title><source>Free E- Journals</source><creator>Bühler, Jonas ; Fehrenbach, Jonas ; Steinmann, Lucas ; Nauck, Christian ; Koulakis, Marios</creator><creatorcontrib>Bühler, Jonas ; Fehrenbach, Jonas ; Steinmann, Lucas ; Nauck, Christian ; Koulakis, Marios</creatorcontrib><description>One persistent obstacle in industrial quality inspection is the detection of anomalies. In real-world use cases, two problems must be addressed: anomalous data is sparse and the same types of anomalies need to be detected on previously unseen objects. Current anomaly detection approaches can be trained with sparse nominal data, whereas domain generalization approaches enable detecting objects in previously unseen domains. Utilizing those two observations, we introduce the hybrid task of domain generalization on sparse classes. To introduce an accompanying dataset for this task, we present a modification of the well-established MVTec AD dataset by generating three new datasets. In addition to applying existing methods for benchmark, we design two embedding-based approaches, Spatial Embedding MLP (SEMLP) and Labeled PatchCore. Overall, SEMLP achieves the best performance with an average image-level AUROC of 87.2 % vs. 80.4 % by MIRO. The new and openly available datasets allow for further research to improve industrial anomaly detection.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Anomalies ; Datasets ; Embedding</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Bühler, Jonas</creatorcontrib><creatorcontrib>Fehrenbach, Jonas</creatorcontrib><creatorcontrib>Steinmann, Lucas</creatorcontrib><creatorcontrib>Nauck, Christian</creatorcontrib><creatorcontrib>Koulakis, Marios</creatorcontrib><title>Domain-independent detection of known anomalies</title><title>arXiv.org</title><description>One persistent obstacle in industrial quality inspection is the detection of anomalies. In real-world use cases, two problems must be addressed: anomalous data is sparse and the same types of anomalies need to be detected on previously unseen objects. Current anomaly detection approaches can be trained with sparse nominal data, whereas domain generalization approaches enable detecting objects in previously unseen domains. Utilizing those two observations, we introduce the hybrid task of domain generalization on sparse classes. To introduce an accompanying dataset for this task, we present a modification of the well-established MVTec AD dataset by generating three new datasets. In addition to applying existing methods for benchmark, we design two embedding-based approaches, Spatial Embedding MLP (SEMLP) and Labeled PatchCore. Overall, SEMLP achieves the best performance with an average image-level AUROC of 87.2 % vs. 80.4 % by MIRO. The new and openly available datasets allow for further research to improve industrial anomaly detection.</description><subject>Anomalies</subject><subject>Datasets</subject><subject>Embedding</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQd8nPTczM083MS0ktSAUSeSUKKaklqcklmfl5CvlpCtl5-eV5Col5QGU5manFPAysaYk5xam8UJqbQdnNNcTZQ7egKL-wNLW4JD4rv7QoDygVb2xgbmpuaWJibGFMnCoAWc0zJQ</recordid><startdate>20240703</startdate><enddate>20240703</enddate><creator>Bühler, Jonas</creator><creator>Fehrenbach, Jonas</creator><creator>Steinmann, Lucas</creator><creator>Nauck, Christian</creator><creator>Koulakis, Marios</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240703</creationdate><title>Domain-independent detection of known anomalies</title><author>Bühler, Jonas ; Fehrenbach, Jonas ; Steinmann, Lucas ; Nauck, Christian ; Koulakis, Marios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30757944383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anomalies</topic><topic>Datasets</topic><topic>Embedding</topic><toplevel>online_resources</toplevel><creatorcontrib>Bühler, Jonas</creatorcontrib><creatorcontrib>Fehrenbach, Jonas</creatorcontrib><creatorcontrib>Steinmann, Lucas</creatorcontrib><creatorcontrib>Nauck, Christian</creatorcontrib><creatorcontrib>Koulakis, Marios</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bühler, Jonas</au><au>Fehrenbach, Jonas</au><au>Steinmann, Lucas</au><au>Nauck, Christian</au><au>Koulakis, Marios</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Domain-independent detection of known anomalies</atitle><jtitle>arXiv.org</jtitle><date>2024-07-03</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>One persistent obstacle in industrial quality inspection is the detection of anomalies. In real-world use cases, two problems must be addressed: anomalous data is sparse and the same types of anomalies need to be detected on previously unseen objects. Current anomaly detection approaches can be trained with sparse nominal data, whereas domain generalization approaches enable detecting objects in previously unseen domains. Utilizing those two observations, we introduce the hybrid task of domain generalization on sparse classes. To introduce an accompanying dataset for this task, we present a modification of the well-established MVTec AD dataset by generating three new datasets. In addition to applying existing methods for benchmark, we design two embedding-based approaches, Spatial Embedding MLP (SEMLP) and Labeled PatchCore. Overall, SEMLP achieves the best performance with an average image-level AUROC of 87.2 % vs. 80.4 % by MIRO. The new and openly available datasets allow for further research to improve industrial anomaly detection.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_3075794438
source Free E- Journals
subjects Anomalies
Datasets
Embedding
title Domain-independent detection of known anomalies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A29%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Domain-independent%20detection%20of%20known%20anomalies&rft.jtitle=arXiv.org&rft.au=B%C3%BChler,%20Jonas&rft.date=2024-07-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3075794438%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3075794438&rft_id=info:pmid/&rfr_iscdi=true