Epitaxial Growth of Rutile GeO\(_2\) via MOCVD
Rutile Germanium Dioxide (r-GeO\(_2\)) has been identified as an ultrawide bandgap (UWBG) semiconductor recently, featuring a bandgap of 4.68 eV, comparable to Ga\(_2\)O\(_3\) but offering bipolar dopability, higher electron mobility, higher thermal conductivity, and higher Baliga's figure of m...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-07 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Rahaman, Imteaz Duersch, Bobby Ellis, Hunter D Scarpulla, Michael A Fu, Kai |
description | Rutile Germanium Dioxide (r-GeO\(_2\)) has been identified as an ultrawide bandgap (UWBG) semiconductor recently, featuring a bandgap of 4.68 eV, comparable to Ga\(_2\)O\(_3\) but offering bipolar dopability, higher electron mobility, higher thermal conductivity, and higher Baliga's figure of merit (BFOM).These superior properties position GeO\(_2\) as a promising material for various semiconductor applications. However, the epitaxial growth of r-GeO\(_2\), particularly in its most advantageous rutile polymorph, is still at an early stage. This work explores the growth of r-GeO\(_2\) using metal-organic chemical vapor deposition (MOCVD) on an r-TiO\(_2\) (001) substrate, utilizing tetraethyl germane (TEGe) as the precursor. Our investigations reveal that higher growth temperatures significantly enhance crystalline quality, achieving a full width at half maximum (FWHM) of 0.181 degree at 925 degree C, compared to 0.54 degree at 840 degree C and amorphous structures at 725 degree C. Additionally, we found that longer growth durations increase surface roughness due to the formation of faceted crystals. Meanwhile, adjusting the susceptor rotation speed from 300 RPM to 170 RPM plays a crucial role in optimizing crystalline quality, effectively reducing surface roughness by approximately 15 times. This study offers a foundational guide for optimizing MOCVD growth conditions of r-GeO\(_2\) films, emphasizing the crucial need for precise control over deposition temperature and rotation speed to enhance adatom mobility and effectively minimize the boundary layer thickness. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3075794049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3075794049</sourcerecordid><originalsourceid>FETCH-proquest_journals_30757940493</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQcy3ILEmsyEzMUXAvyi8vyVDIT1MIKi3JzElVcE_1j9GIN4rRVCjLTFTw9XcOc-FhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXhjA3NTc0sTAxNLY-JUAQA4OzCH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075794049</pqid></control><display><type>article</type><title>Epitaxial Growth of Rutile GeO\(_2\) via MOCVD</title><source>Free E- Journals</source><creator>Rahaman, Imteaz ; Duersch, Bobby ; Ellis, Hunter D ; Scarpulla, Michael A ; Fu, Kai</creator><creatorcontrib>Rahaman, Imteaz ; Duersch, Bobby ; Ellis, Hunter D ; Scarpulla, Michael A ; Fu, Kai</creatorcontrib><description>Rutile Germanium Dioxide (r-GeO\(_2\)) has been identified as an ultrawide bandgap (UWBG) semiconductor recently, featuring a bandgap of 4.68 eV, comparable to Ga\(_2\)O\(_3\) but offering bipolar dopability, higher electron mobility, higher thermal conductivity, and higher Baliga's figure of merit (BFOM).These superior properties position GeO\(_2\) as a promising material for various semiconductor applications. However, the epitaxial growth of r-GeO\(_2\), particularly in its most advantageous rutile polymorph, is still at an early stage. This work explores the growth of r-GeO\(_2\) using metal-organic chemical vapor deposition (MOCVD) on an r-TiO\(_2\) (001) substrate, utilizing tetraethyl germane (TEGe) as the precursor. Our investigations reveal that higher growth temperatures significantly enhance crystalline quality, achieving a full width at half maximum (FWHM) of 0.181 degree at 925 degree C, compared to 0.54 degree at 840 degree C and amorphous structures at 725 degree C. Additionally, we found that longer growth durations increase surface roughness due to the formation of faceted crystals. Meanwhile, adjusting the susceptor rotation speed from 300 RPM to 170 RPM plays a crucial role in optimizing crystalline quality, effectively reducing surface roughness by approximately 15 times. This study offers a foundational guide for optimizing MOCVD growth conditions of r-GeO\(_2\) films, emphasizing the crucial need for precise control over deposition temperature and rotation speed to enhance adatom mobility and effectively minimize the boundary layer thickness.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Boundary layer thickness ; Electron mobility ; Energy gap ; Epitaxial growth ; Figure of merit ; Germanium ; Germanium oxides ; Metalorganic chemical vapor deposition ; Organic chemicals ; Organic chemistry ; Rotation ; Rutile ; Substrates ; Surface roughness ; Thermal conductivity</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Rahaman, Imteaz</creatorcontrib><creatorcontrib>Duersch, Bobby</creatorcontrib><creatorcontrib>Ellis, Hunter D</creatorcontrib><creatorcontrib>Scarpulla, Michael A</creatorcontrib><creatorcontrib>Fu, Kai</creatorcontrib><title>Epitaxial Growth of Rutile GeO\(_2\) via MOCVD</title><title>arXiv.org</title><description>Rutile Germanium Dioxide (r-GeO\(_2\)) has been identified as an ultrawide bandgap (UWBG) semiconductor recently, featuring a bandgap of 4.68 eV, comparable to Ga\(_2\)O\(_3\) but offering bipolar dopability, higher electron mobility, higher thermal conductivity, and higher Baliga's figure of merit (BFOM).These superior properties position GeO\(_2\) as a promising material for various semiconductor applications. However, the epitaxial growth of r-GeO\(_2\), particularly in its most advantageous rutile polymorph, is still at an early stage. This work explores the growth of r-GeO\(_2\) using metal-organic chemical vapor deposition (MOCVD) on an r-TiO\(_2\) (001) substrate, utilizing tetraethyl germane (TEGe) as the precursor. Our investigations reveal that higher growth temperatures significantly enhance crystalline quality, achieving a full width at half maximum (FWHM) of 0.181 degree at 925 degree C, compared to 0.54 degree at 840 degree C and amorphous structures at 725 degree C. Additionally, we found that longer growth durations increase surface roughness due to the formation of faceted crystals. Meanwhile, adjusting the susceptor rotation speed from 300 RPM to 170 RPM plays a crucial role in optimizing crystalline quality, effectively reducing surface roughness by approximately 15 times. This study offers a foundational guide for optimizing MOCVD growth conditions of r-GeO\(_2\) films, emphasizing the crucial need for precise control over deposition temperature and rotation speed to enhance adatom mobility and effectively minimize the boundary layer thickness.</description><subject>Boundary layer thickness</subject><subject>Electron mobility</subject><subject>Energy gap</subject><subject>Epitaxial growth</subject><subject>Figure of merit</subject><subject>Germanium</subject><subject>Germanium oxides</subject><subject>Metalorganic chemical vapor deposition</subject><subject>Organic chemicals</subject><subject>Organic chemistry</subject><subject>Rotation</subject><subject>Rutile</subject><subject>Substrates</subject><subject>Surface roughness</subject><subject>Thermal conductivity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQcy3ILEmsyEzMUXAvyi8vyVDIT1MIKi3JzElVcE_1j9GIN4rRVCjLTFTw9XcOc-FhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXhjA3NTc0sTAxNLY-JUAQA4OzCH</recordid><startdate>20240702</startdate><enddate>20240702</enddate><creator>Rahaman, Imteaz</creator><creator>Duersch, Bobby</creator><creator>Ellis, Hunter D</creator><creator>Scarpulla, Michael A</creator><creator>Fu, Kai</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240702</creationdate><title>Epitaxial Growth of Rutile GeO\(_2\) via MOCVD</title><author>Rahaman, Imteaz ; Duersch, Bobby ; Ellis, Hunter D ; Scarpulla, Michael A ; Fu, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30757940493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boundary layer thickness</topic><topic>Electron mobility</topic><topic>Energy gap</topic><topic>Epitaxial growth</topic><topic>Figure of merit</topic><topic>Germanium</topic><topic>Germanium oxides</topic><topic>Metalorganic chemical vapor deposition</topic><topic>Organic chemicals</topic><topic>Organic chemistry</topic><topic>Rotation</topic><topic>Rutile</topic><topic>Substrates</topic><topic>Surface roughness</topic><topic>Thermal conductivity</topic><toplevel>online_resources</toplevel><creatorcontrib>Rahaman, Imteaz</creatorcontrib><creatorcontrib>Duersch, Bobby</creatorcontrib><creatorcontrib>Ellis, Hunter D</creatorcontrib><creatorcontrib>Scarpulla, Michael A</creatorcontrib><creatorcontrib>Fu, Kai</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahaman, Imteaz</au><au>Duersch, Bobby</au><au>Ellis, Hunter D</au><au>Scarpulla, Michael A</au><au>Fu, Kai</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Epitaxial Growth of Rutile GeO\(_2\) via MOCVD</atitle><jtitle>arXiv.org</jtitle><date>2024-07-02</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Rutile Germanium Dioxide (r-GeO\(_2\)) has been identified as an ultrawide bandgap (UWBG) semiconductor recently, featuring a bandgap of 4.68 eV, comparable to Ga\(_2\)O\(_3\) but offering bipolar dopability, higher electron mobility, higher thermal conductivity, and higher Baliga's figure of merit (BFOM).These superior properties position GeO\(_2\) as a promising material for various semiconductor applications. However, the epitaxial growth of r-GeO\(_2\), particularly in its most advantageous rutile polymorph, is still at an early stage. This work explores the growth of r-GeO\(_2\) using metal-organic chemical vapor deposition (MOCVD) on an r-TiO\(_2\) (001) substrate, utilizing tetraethyl germane (TEGe) as the precursor. Our investigations reveal that higher growth temperatures significantly enhance crystalline quality, achieving a full width at half maximum (FWHM) of 0.181 degree at 925 degree C, compared to 0.54 degree at 840 degree C and amorphous structures at 725 degree C. Additionally, we found that longer growth durations increase surface roughness due to the formation of faceted crystals. Meanwhile, adjusting the susceptor rotation speed from 300 RPM to 170 RPM plays a crucial role in optimizing crystalline quality, effectively reducing surface roughness by approximately 15 times. This study offers a foundational guide for optimizing MOCVD growth conditions of r-GeO\(_2\) films, emphasizing the crucial need for precise control over deposition temperature and rotation speed to enhance adatom mobility and effectively minimize the boundary layer thickness.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3075794049 |
source | Free E- Journals |
subjects | Boundary layer thickness Electron mobility Energy gap Epitaxial growth Figure of merit Germanium Germanium oxides Metalorganic chemical vapor deposition Organic chemicals Organic chemistry Rotation Rutile Substrates Surface roughness Thermal conductivity |
title | Epitaxial Growth of Rutile GeO\(_2\) via MOCVD |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T16%3A00%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Epitaxial%20Growth%20of%20Rutile%20GeO%5C(_2%5C)%20via%20MOCVD&rft.jtitle=arXiv.org&rft.au=Rahaman,%20Imteaz&rft.date=2024-07-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3075794049%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3075794049&rft_id=info:pmid/&rfr_iscdi=true |