Nonlocal Green Theorems and Helmholtz Decompositions for Truncated Fractional Gradients
In this work we further develop a nonlocal calculus theory (initially introduced in Bellido et al. (Adv Nonlinear Anal 12:20220316, 2023)) associated with singular fractional-type operators which exhibit kernels with finite support of interactions. The applicability of the framework to nonlocal elas...
Gespeichert in:
Veröffentlicht in: | Applied mathematics & optimization 2024-08, Vol.90 (1), p.16, Article 16 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 16 |
container_title | Applied mathematics & optimization |
container_volume | 90 |
creator | Bellido, José Carlos Cueto, Javier Foss, Mikil D. Radu, Petronela |
description | In this work we further develop a nonlocal calculus theory (initially introduced in Bellido et al. (Adv Nonlinear Anal 12:20220316, 2023)) associated with singular fractional-type operators which exhibit kernels with finite support of interactions. The applicability of the framework to nonlocal elasticity and the theory of peridynamics has attracted increased interest and motivation to study it and find connections with its classical counterpart. In particular, a critical contribution of this paper is producing vector identities, integration by part type theorems (such as the Divergence Theorem, Green identities), as well as a Helmholtz–Hodge decomposition. The estimates, together with the analysis performed along the way provide stepping stones for proving additional results in the framework, as well as pathways for numerical implementations. |
doi_str_mv | 10.1007/s00245-024-10160-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3075788768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3075788768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-5150152dd1dbe358834335cee82275ade97e04ddc4e7ddc99f32c90f6f7c122b3</originalsourceid><addsrcrecordid>eNp9kDFPwzAUhC0EEqXwB5gsMQee7dhORlRoi1TBUsRopfYLTZXExU4H-PWYBomN5U56-u70dIRcM7hlAPouAvBcZkkyBkxBJk7IhOWCZ6BAnZIJQCmzXDF1Ti5i3EHihRIT8vbs-9bbqqWLgNjT9RZ9wC7Sqnd0iW239e3wRR_Q-m7vYzM0vo-09oGuw6G31YCOzkNlf-7Hkso12A_xkpzVVRvx6ten5HX-uJ4ts9XL4ml2v8osBxgyySQwyZ1jboNCFoXIhZAWseBcy8phqRFy52yOOmlZ1oLbEmpVa8s434gpuRl798F_HDAOZucPIb0SjQAtdVFoVSSKj5QNPsaAtdmHpqvCp2FgfgY044AmiTkOaEQKiTEUE9y_Y_ir_if1DfSsc80</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075788768</pqid></control><display><type>article</type><title>Nonlocal Green Theorems and Helmholtz Decompositions for Truncated Fractional Gradients</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bellido, José Carlos ; Cueto, Javier ; Foss, Mikil D. ; Radu, Petronela</creator><creatorcontrib>Bellido, José Carlos ; Cueto, Javier ; Foss, Mikil D. ; Radu, Petronela</creatorcontrib><description>In this work we further develop a nonlocal calculus theory (initially introduced in Bellido et al. (Adv Nonlinear Anal 12:20220316, 2023)) associated with singular fractional-type operators which exhibit kernels with finite support of interactions. The applicability of the framework to nonlocal elasticity and the theory of peridynamics has attracted increased interest and motivation to study it and find connections with its classical counterpart. In particular, a critical contribution of this paper is producing vector identities, integration by part type theorems (such as the Divergence Theorem, Green identities), as well as a Helmholtz–Hodge decomposition. The estimates, together with the analysis performed along the way provide stepping stones for proving additional results in the framework, as well as pathways for numerical implementations.</description><identifier>ISSN: 0095-4616</identifier><identifier>EISSN: 1432-0606</identifier><identifier>DOI: 10.1007/s00245-024-10160-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applied mathematics ; Calculus ; Calculus of Variations and Optimal Control; Optimization ; Control ; Decomposition ; Divergence ; Helmholtz equations ; Mathematical and Computational Physics ; Mathematical functions ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Nonlocal elasticity ; Numerical and Computational Physics ; Optimization ; Simulation ; Systems Theory ; Theorems ; Theoretical</subject><ispartof>Applied mathematics & optimization, 2024-08, Vol.90 (1), p.16, Article 16</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-5150152dd1dbe358834335cee82275ade97e04ddc4e7ddc99f32c90f6f7c122b3</cites><orcidid>0000-0001-5750-1349</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00245-024-10160-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00245-024-10160-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Bellido, José Carlos</creatorcontrib><creatorcontrib>Cueto, Javier</creatorcontrib><creatorcontrib>Foss, Mikil D.</creatorcontrib><creatorcontrib>Radu, Petronela</creatorcontrib><title>Nonlocal Green Theorems and Helmholtz Decompositions for Truncated Fractional Gradients</title><title>Applied mathematics & optimization</title><addtitle>Appl Math Optim</addtitle><description>In this work we further develop a nonlocal calculus theory (initially introduced in Bellido et al. (Adv Nonlinear Anal 12:20220316, 2023)) associated with singular fractional-type operators which exhibit kernels with finite support of interactions. The applicability of the framework to nonlocal elasticity and the theory of peridynamics has attracted increased interest and motivation to study it and find connections with its classical counterpart. In particular, a critical contribution of this paper is producing vector identities, integration by part type theorems (such as the Divergence Theorem, Green identities), as well as a Helmholtz–Hodge decomposition. The estimates, together with the analysis performed along the way provide stepping stones for proving additional results in the framework, as well as pathways for numerical implementations.</description><subject>Applied mathematics</subject><subject>Calculus</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Decomposition</subject><subject>Divergence</subject><subject>Helmholtz equations</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical functions</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlocal elasticity</subject><subject>Numerical and Computational Physics</subject><subject>Optimization</subject><subject>Simulation</subject><subject>Systems Theory</subject><subject>Theorems</subject><subject>Theoretical</subject><issn>0095-4616</issn><issn>1432-0606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAUhC0EEqXwB5gsMQee7dhORlRoi1TBUsRopfYLTZXExU4H-PWYBomN5U56-u70dIRcM7hlAPouAvBcZkkyBkxBJk7IhOWCZ6BAnZIJQCmzXDF1Ti5i3EHihRIT8vbs-9bbqqWLgNjT9RZ9wC7Sqnd0iW239e3wRR_Q-m7vYzM0vo-09oGuw6G31YCOzkNlf-7Hkso12A_xkpzVVRvx6ten5HX-uJ4ts9XL4ml2v8osBxgyySQwyZ1jboNCFoXIhZAWseBcy8phqRFy52yOOmlZ1oLbEmpVa8s434gpuRl798F_HDAOZucPIb0SjQAtdVFoVSSKj5QNPsaAtdmHpqvCp2FgfgY044AmiTkOaEQKiTEUE9y_Y_ir_if1DfSsc80</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Bellido, José Carlos</creator><creator>Cueto, Javier</creator><creator>Foss, Mikil D.</creator><creator>Radu, Petronela</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0001-5750-1349</orcidid></search><sort><creationdate>20240801</creationdate><title>Nonlocal Green Theorems and Helmholtz Decompositions for Truncated Fractional Gradients</title><author>Bellido, José Carlos ; Cueto, Javier ; Foss, Mikil D. ; Radu, Petronela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-5150152dd1dbe358834335cee82275ade97e04ddc4e7ddc99f32c90f6f7c122b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applied mathematics</topic><topic>Calculus</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Decomposition</topic><topic>Divergence</topic><topic>Helmholtz equations</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical functions</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlocal elasticity</topic><topic>Numerical and Computational Physics</topic><topic>Optimization</topic><topic>Simulation</topic><topic>Systems Theory</topic><topic>Theorems</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bellido, José Carlos</creatorcontrib><creatorcontrib>Cueto, Javier</creatorcontrib><creatorcontrib>Foss, Mikil D.</creatorcontrib><creatorcontrib>Radu, Petronela</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Applied mathematics & optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bellido, José Carlos</au><au>Cueto, Javier</au><au>Foss, Mikil D.</au><au>Radu, Petronela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlocal Green Theorems and Helmholtz Decompositions for Truncated Fractional Gradients</atitle><jtitle>Applied mathematics & optimization</jtitle><stitle>Appl Math Optim</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>90</volume><issue>1</issue><spage>16</spage><pages>16-</pages><artnum>16</artnum><issn>0095-4616</issn><eissn>1432-0606</eissn><abstract>In this work we further develop a nonlocal calculus theory (initially introduced in Bellido et al. (Adv Nonlinear Anal 12:20220316, 2023)) associated with singular fractional-type operators which exhibit kernels with finite support of interactions. The applicability of the framework to nonlocal elasticity and the theory of peridynamics has attracted increased interest and motivation to study it and find connections with its classical counterpart. In particular, a critical contribution of this paper is producing vector identities, integration by part type theorems (such as the Divergence Theorem, Green identities), as well as a Helmholtz–Hodge decomposition. The estimates, together with the analysis performed along the way provide stepping stones for proving additional results in the framework, as well as pathways for numerical implementations.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00245-024-10160-3</doi><orcidid>https://orcid.org/0000-0001-5750-1349</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0095-4616 |
ispartof | Applied mathematics & optimization, 2024-08, Vol.90 (1), p.16, Article 16 |
issn | 0095-4616 1432-0606 |
language | eng |
recordid | cdi_proquest_journals_3075788768 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applied mathematics Calculus Calculus of Variations and Optimal Control Optimization Control Decomposition Divergence Helmholtz equations Mathematical and Computational Physics Mathematical functions Mathematical Methods in Physics Mathematics Mathematics and Statistics Nonlocal elasticity Numerical and Computational Physics Optimization Simulation Systems Theory Theorems Theoretical |
title | Nonlocal Green Theorems and Helmholtz Decompositions for Truncated Fractional Gradients |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A04%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlocal%20Green%20Theorems%20and%20Helmholtz%20Decompositions%20for%20Truncated%20Fractional%20Gradients&rft.jtitle=Applied%20mathematics%20&%20optimization&rft.au=Bellido,%20Jos%C3%A9%20Carlos&rft.date=2024-08-01&rft.volume=90&rft.issue=1&rft.spage=16&rft.pages=16-&rft.artnum=16&rft.issn=0095-4616&rft.eissn=1432-0606&rft_id=info:doi/10.1007/s00245-024-10160-3&rft_dat=%3Cproquest_cross%3E3075788768%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3075788768&rft_id=info:pmid/&rfr_iscdi=true |