Nonlocal Green Theorems and Helmholtz Decompositions for Truncated Fractional Gradients

In this work we further develop a nonlocal calculus theory (initially introduced in Bellido et al. (Adv Nonlinear Anal 12:20220316, 2023)) associated with singular fractional-type operators which exhibit kernels with finite support of interactions. The applicability of the framework to nonlocal elas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics & optimization 2024-08, Vol.90 (1), p.16, Article 16
Hauptverfasser: Bellido, José Carlos, Cueto, Javier, Foss, Mikil D., Radu, Petronela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 16
container_title Applied mathematics & optimization
container_volume 90
creator Bellido, José Carlos
Cueto, Javier
Foss, Mikil D.
Radu, Petronela
description In this work we further develop a nonlocal calculus theory (initially introduced in Bellido et al. (Adv Nonlinear Anal 12:20220316, 2023)) associated with singular fractional-type operators which exhibit kernels with finite support of interactions. The applicability of the framework to nonlocal elasticity and the theory of peridynamics has attracted increased interest and motivation to study it and find connections with its classical counterpart. In particular, a critical contribution of this paper is producing vector identities, integration by part type theorems (such as the Divergence Theorem, Green identities), as well as a Helmholtz–Hodge decomposition. The estimates, together with the analysis performed along the way provide stepping stones for proving additional results in the framework, as well as pathways for numerical implementations.
doi_str_mv 10.1007/s00245-024-10160-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3075788768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3075788768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-5150152dd1dbe358834335cee82275ade97e04ddc4e7ddc99f32c90f6f7c122b3</originalsourceid><addsrcrecordid>eNp9kDFPwzAUhC0EEqXwB5gsMQee7dhORlRoi1TBUsRopfYLTZXExU4H-PWYBomN5U56-u70dIRcM7hlAPouAvBcZkkyBkxBJk7IhOWCZ6BAnZIJQCmzXDF1Ti5i3EHihRIT8vbs-9bbqqWLgNjT9RZ9wC7Sqnd0iW239e3wRR_Q-m7vYzM0vo-09oGuw6G31YCOzkNlf-7Hkso12A_xkpzVVRvx6ten5HX-uJ4ts9XL4ml2v8osBxgyySQwyZ1jboNCFoXIhZAWseBcy8phqRFy52yOOmlZ1oLbEmpVa8s434gpuRl798F_HDAOZucPIb0SjQAtdVFoVSSKj5QNPsaAtdmHpqvCp2FgfgY044AmiTkOaEQKiTEUE9y_Y_ir_if1DfSsc80</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075788768</pqid></control><display><type>article</type><title>Nonlocal Green Theorems and Helmholtz Decompositions for Truncated Fractional Gradients</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bellido, José Carlos ; Cueto, Javier ; Foss, Mikil D. ; Radu, Petronela</creator><creatorcontrib>Bellido, José Carlos ; Cueto, Javier ; Foss, Mikil D. ; Radu, Petronela</creatorcontrib><description>In this work we further develop a nonlocal calculus theory (initially introduced in Bellido et al. (Adv Nonlinear Anal 12:20220316, 2023)) associated with singular fractional-type operators which exhibit kernels with finite support of interactions. The applicability of the framework to nonlocal elasticity and the theory of peridynamics has attracted increased interest and motivation to study it and find connections with its classical counterpart. In particular, a critical contribution of this paper is producing vector identities, integration by part type theorems (such as the Divergence Theorem, Green identities), as well as a Helmholtz–Hodge decomposition. The estimates, together with the analysis performed along the way provide stepping stones for proving additional results in the framework, as well as pathways for numerical implementations.</description><identifier>ISSN: 0095-4616</identifier><identifier>EISSN: 1432-0606</identifier><identifier>DOI: 10.1007/s00245-024-10160-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applied mathematics ; Calculus ; Calculus of Variations and Optimal Control; Optimization ; Control ; Decomposition ; Divergence ; Helmholtz equations ; Mathematical and Computational Physics ; Mathematical functions ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Nonlocal elasticity ; Numerical and Computational Physics ; Optimization ; Simulation ; Systems Theory ; Theorems ; Theoretical</subject><ispartof>Applied mathematics &amp; optimization, 2024-08, Vol.90 (1), p.16, Article 16</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-5150152dd1dbe358834335cee82275ade97e04ddc4e7ddc99f32c90f6f7c122b3</cites><orcidid>0000-0001-5750-1349</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00245-024-10160-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00245-024-10160-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Bellido, José Carlos</creatorcontrib><creatorcontrib>Cueto, Javier</creatorcontrib><creatorcontrib>Foss, Mikil D.</creatorcontrib><creatorcontrib>Radu, Petronela</creatorcontrib><title>Nonlocal Green Theorems and Helmholtz Decompositions for Truncated Fractional Gradients</title><title>Applied mathematics &amp; optimization</title><addtitle>Appl Math Optim</addtitle><description>In this work we further develop a nonlocal calculus theory (initially introduced in Bellido et al. (Adv Nonlinear Anal 12:20220316, 2023)) associated with singular fractional-type operators which exhibit kernels with finite support of interactions. The applicability of the framework to nonlocal elasticity and the theory of peridynamics has attracted increased interest and motivation to study it and find connections with its classical counterpart. In particular, a critical contribution of this paper is producing vector identities, integration by part type theorems (such as the Divergence Theorem, Green identities), as well as a Helmholtz–Hodge decomposition. The estimates, together with the analysis performed along the way provide stepping stones for proving additional results in the framework, as well as pathways for numerical implementations.</description><subject>Applied mathematics</subject><subject>Calculus</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Decomposition</subject><subject>Divergence</subject><subject>Helmholtz equations</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical functions</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlocal elasticity</subject><subject>Numerical and Computational Physics</subject><subject>Optimization</subject><subject>Simulation</subject><subject>Systems Theory</subject><subject>Theorems</subject><subject>Theoretical</subject><issn>0095-4616</issn><issn>1432-0606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAUhC0EEqXwB5gsMQee7dhORlRoi1TBUsRopfYLTZXExU4H-PWYBomN5U56-u70dIRcM7hlAPouAvBcZkkyBkxBJk7IhOWCZ6BAnZIJQCmzXDF1Ti5i3EHihRIT8vbs-9bbqqWLgNjT9RZ9wC7Sqnd0iW239e3wRR_Q-m7vYzM0vo-09oGuw6G31YCOzkNlf-7Hkso12A_xkpzVVRvx6ten5HX-uJ4ts9XL4ml2v8osBxgyySQwyZ1jboNCFoXIhZAWseBcy8phqRFy52yOOmlZ1oLbEmpVa8s434gpuRl798F_HDAOZucPIb0SjQAtdVFoVSSKj5QNPsaAtdmHpqvCp2FgfgY044AmiTkOaEQKiTEUE9y_Y_ir_if1DfSsc80</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Bellido, José Carlos</creator><creator>Cueto, Javier</creator><creator>Foss, Mikil D.</creator><creator>Radu, Petronela</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0001-5750-1349</orcidid></search><sort><creationdate>20240801</creationdate><title>Nonlocal Green Theorems and Helmholtz Decompositions for Truncated Fractional Gradients</title><author>Bellido, José Carlos ; Cueto, Javier ; Foss, Mikil D. ; Radu, Petronela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-5150152dd1dbe358834335cee82275ade97e04ddc4e7ddc99f32c90f6f7c122b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applied mathematics</topic><topic>Calculus</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Decomposition</topic><topic>Divergence</topic><topic>Helmholtz equations</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical functions</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlocal elasticity</topic><topic>Numerical and Computational Physics</topic><topic>Optimization</topic><topic>Simulation</topic><topic>Systems Theory</topic><topic>Theorems</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bellido, José Carlos</creatorcontrib><creatorcontrib>Cueto, Javier</creatorcontrib><creatorcontrib>Foss, Mikil D.</creatorcontrib><creatorcontrib>Radu, Petronela</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Applied mathematics &amp; optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bellido, José Carlos</au><au>Cueto, Javier</au><au>Foss, Mikil D.</au><au>Radu, Petronela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlocal Green Theorems and Helmholtz Decompositions for Truncated Fractional Gradients</atitle><jtitle>Applied mathematics &amp; optimization</jtitle><stitle>Appl Math Optim</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>90</volume><issue>1</issue><spage>16</spage><pages>16-</pages><artnum>16</artnum><issn>0095-4616</issn><eissn>1432-0606</eissn><abstract>In this work we further develop a nonlocal calculus theory (initially introduced in Bellido et al. (Adv Nonlinear Anal 12:20220316, 2023)) associated with singular fractional-type operators which exhibit kernels with finite support of interactions. The applicability of the framework to nonlocal elasticity and the theory of peridynamics has attracted increased interest and motivation to study it and find connections with its classical counterpart. In particular, a critical contribution of this paper is producing vector identities, integration by part type theorems (such as the Divergence Theorem, Green identities), as well as a Helmholtz–Hodge decomposition. The estimates, together with the analysis performed along the way provide stepping stones for proving additional results in the framework, as well as pathways for numerical implementations.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00245-024-10160-3</doi><orcidid>https://orcid.org/0000-0001-5750-1349</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0095-4616
ispartof Applied mathematics & optimization, 2024-08, Vol.90 (1), p.16, Article 16
issn 0095-4616
1432-0606
language eng
recordid cdi_proquest_journals_3075788768
source SpringerLink Journals - AutoHoldings
subjects Applied mathematics
Calculus
Calculus of Variations and Optimal Control
Optimization
Control
Decomposition
Divergence
Helmholtz equations
Mathematical and Computational Physics
Mathematical functions
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Nonlocal elasticity
Numerical and Computational Physics
Optimization
Simulation
Systems Theory
Theorems
Theoretical
title Nonlocal Green Theorems and Helmholtz Decompositions for Truncated Fractional Gradients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A04%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlocal%20Green%20Theorems%20and%20Helmholtz%20Decompositions%20for%20Truncated%20Fractional%20Gradients&rft.jtitle=Applied%20mathematics%20&%20optimization&rft.au=Bellido,%20Jos%C3%A9%20Carlos&rft.date=2024-08-01&rft.volume=90&rft.issue=1&rft.spage=16&rft.pages=16-&rft.artnum=16&rft.issn=0095-4616&rft.eissn=1432-0606&rft_id=info:doi/10.1007/s00245-024-10160-3&rft_dat=%3Cproquest_cross%3E3075788768%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3075788768&rft_id=info:pmid/&rfr_iscdi=true