Seasonal terrain texture synthesis via Köppen periodic conditioning

This paper presents the first method for synthesizing seasonal transition of terrain textures for an input heightfield. Our method reproduces a seamless transition of terrain textures according to the seasons by learning measured data on the earth using a convolutional neural network. We attribute t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Visual computer 2024-07, Vol.40 (7), p.4857-4868
Hauptverfasser: Kanai, Toshiki, Endo, Yuki, Kanamori, Yoshihiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4868
container_issue 7
container_start_page 4857
container_title The Visual computer
container_volume 40
creator Kanai, Toshiki
Endo, Yuki
Kanamori, Yoshihiro
description This paper presents the first method for synthesizing seasonal transition of terrain textures for an input heightfield. Our method reproduces a seamless transition of terrain textures according to the seasons by learning measured data on the earth using a convolutional neural network. We attribute the main seasonal texture transition to vegetation and snow, and control the texture synthesis not only with the input heightfield but also with the annual temperature and precipitation based on Köppen’s climate classification as well as insolation at the location. We found that month-by-month synthesis yields incoherent transitions, while a naïve conditioning with explicit temporal information (e.g., month) degrades generalizability due to the north–south hemisphere difference. To address these issues, we introduce a simple solution— periodic conditioning on the annual data without explicit temporal information. Our experiments reveal that our method can synthesize plausible seasonal transitions of terrain textures. We also demonstrate large-scale texture synthesis by tiling the texture output.
doi_str_mv 10.1007/s00371-024-03485-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3075787495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3075787495</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-4905bce527b203afb83f8b07d6be0cc54c6e05397655492bfdfb64c9defacb123</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoOI6-gKuC6-jNX9MuZfzFARfqOiRpOmYY05q04ryYL-CLGa3gztXhwDmHez-EjgmcEgB5lgCYJBgox8B4JTDZQTPCGcWUEbGLZkBkhams6n10kNIaspe8nqGLB6dTF_SmGFyM2oes78MYXZG2YXh2yafizevi7vOj710oehd913hb2C40fvBd8GF1iPZavUnu6Ffn6Onq8nFxg5f317eL8yW2FGDAvAZhrBNUGgpMt6ZibWVANqVxYK3gtnQgWC1LIXhNTdu0puS2blyrrSGUzdHJtNvH7nV0aVDrboz5-KQYSCGr_JLIKTqlbOxSiq5VffQvOm4VAfVNS020VKalfmgpkktsKqUcDisX_6b_aX0B52RuqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075787495</pqid></control><display><type>article</type><title>Seasonal terrain texture synthesis via Köppen periodic conditioning</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kanai, Toshiki ; Endo, Yuki ; Kanamori, Yoshihiro</creator><creatorcontrib>Kanai, Toshiki ; Endo, Yuki ; Kanamori, Yoshihiro</creatorcontrib><description>This paper presents the first method for synthesizing seasonal transition of terrain textures for an input heightfield. Our method reproduces a seamless transition of terrain textures according to the seasons by learning measured data on the earth using a convolutional neural network. We attribute the main seasonal texture transition to vegetation and snow, and control the texture synthesis not only with the input heightfield but also with the annual temperature and precipitation based on Köppen’s climate classification as well as insolation at the location. We found that month-by-month synthesis yields incoherent transitions, while a naïve conditioning with explicit temporal information (e.g., month) degrades generalizability due to the north–south hemisphere difference. To address these issues, we introduce a simple solution— periodic conditioning on the annual data without explicit temporal information. Our experiments reveal that our method can synthesize plausible seasonal transitions of terrain textures. We also demonstrate large-scale texture synthesis by tiling the texture output.</description><identifier>ISSN: 0178-2789</identifier><identifier>EISSN: 1432-2315</identifier><identifier>DOI: 10.1007/s00371-024-03485-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Annual precipitation ; Artificial Intelligence ; Artificial neural networks ; Climate change ; Computer Graphics ; Computer Science ; Datasets ; Geometry ; Image Processing and Computer Vision ; Methods ; Precipitation ; Radiation ; Satellites ; Seasonal variations ; Simulation ; Summer ; Synthesis ; Terrain ; Texture ; Tiling ; Topography ; Vegetation ; Winter</subject><ispartof>The Visual computer, 2024-07, Vol.40 (7), p.4857-4868</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-4905bce527b203afb83f8b07d6be0cc54c6e05397655492bfdfb64c9defacb123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00371-024-03485-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00371-024-03485-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Kanai, Toshiki</creatorcontrib><creatorcontrib>Endo, Yuki</creatorcontrib><creatorcontrib>Kanamori, Yoshihiro</creatorcontrib><title>Seasonal terrain texture synthesis via Köppen periodic conditioning</title><title>The Visual computer</title><addtitle>Vis Comput</addtitle><description>This paper presents the first method for synthesizing seasonal transition of terrain textures for an input heightfield. Our method reproduces a seamless transition of terrain textures according to the seasons by learning measured data on the earth using a convolutional neural network. We attribute the main seasonal texture transition to vegetation and snow, and control the texture synthesis not only with the input heightfield but also with the annual temperature and precipitation based on Köppen’s climate classification as well as insolation at the location. We found that month-by-month synthesis yields incoherent transitions, while a naïve conditioning with explicit temporal information (e.g., month) degrades generalizability due to the north–south hemisphere difference. To address these issues, we introduce a simple solution— periodic conditioning on the annual data without explicit temporal information. Our experiments reveal that our method can synthesize plausible seasonal transitions of terrain textures. We also demonstrate large-scale texture synthesis by tiling the texture output.</description><subject>Annual precipitation</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Climate change</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Datasets</subject><subject>Geometry</subject><subject>Image Processing and Computer Vision</subject><subject>Methods</subject><subject>Precipitation</subject><subject>Radiation</subject><subject>Satellites</subject><subject>Seasonal variations</subject><subject>Simulation</subject><subject>Summer</subject><subject>Synthesis</subject><subject>Terrain</subject><subject>Texture</subject><subject>Tiling</subject><subject>Topography</subject><subject>Vegetation</subject><subject>Winter</subject><issn>0178-2789</issn><issn>1432-2315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAUhYMoOI6-gKuC6-jNX9MuZfzFARfqOiRpOmYY05q04ryYL-CLGa3gztXhwDmHez-EjgmcEgB5lgCYJBgox8B4JTDZQTPCGcWUEbGLZkBkhams6n10kNIaspe8nqGLB6dTF_SmGFyM2oes78MYXZG2YXh2yafizevi7vOj710oehd913hb2C40fvBd8GF1iPZavUnu6Ffn6Onq8nFxg5f317eL8yW2FGDAvAZhrBNUGgpMt6ZibWVANqVxYK3gtnQgWC1LIXhNTdu0puS2blyrrSGUzdHJtNvH7nV0aVDrboz5-KQYSCGr_JLIKTqlbOxSiq5VffQvOm4VAfVNS020VKalfmgpkktsKqUcDisX_6b_aX0B52RuqA</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Kanai, Toshiki</creator><creator>Endo, Yuki</creator><creator>Kanamori, Yoshihiro</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20240701</creationdate><title>Seasonal terrain texture synthesis via Köppen periodic conditioning</title><author>Kanai, Toshiki ; Endo, Yuki ; Kanamori, Yoshihiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-4905bce527b203afb83f8b07d6be0cc54c6e05397655492bfdfb64c9defacb123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Annual precipitation</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Climate change</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Datasets</topic><topic>Geometry</topic><topic>Image Processing and Computer Vision</topic><topic>Methods</topic><topic>Precipitation</topic><topic>Radiation</topic><topic>Satellites</topic><topic>Seasonal variations</topic><topic>Simulation</topic><topic>Summer</topic><topic>Synthesis</topic><topic>Terrain</topic><topic>Texture</topic><topic>Tiling</topic><topic>Topography</topic><topic>Vegetation</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kanai, Toshiki</creatorcontrib><creatorcontrib>Endo, Yuki</creatorcontrib><creatorcontrib>Kanamori, Yoshihiro</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Visual computer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kanai, Toshiki</au><au>Endo, Yuki</au><au>Kanamori, Yoshihiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Seasonal terrain texture synthesis via Köppen periodic conditioning</atitle><jtitle>The Visual computer</jtitle><stitle>Vis Comput</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>40</volume><issue>7</issue><spage>4857</spage><epage>4868</epage><pages>4857-4868</pages><issn>0178-2789</issn><eissn>1432-2315</eissn><abstract>This paper presents the first method for synthesizing seasonal transition of terrain textures for an input heightfield. Our method reproduces a seamless transition of terrain textures according to the seasons by learning measured data on the earth using a convolutional neural network. We attribute the main seasonal texture transition to vegetation and snow, and control the texture synthesis not only with the input heightfield but also with the annual temperature and precipitation based on Köppen’s climate classification as well as insolation at the location. We found that month-by-month synthesis yields incoherent transitions, while a naïve conditioning with explicit temporal information (e.g., month) degrades generalizability due to the north–south hemisphere difference. To address these issues, we introduce a simple solution— periodic conditioning on the annual data without explicit temporal information. Our experiments reveal that our method can synthesize plausible seasonal transitions of terrain textures. We also demonstrate large-scale texture synthesis by tiling the texture output.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00371-024-03485-1</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0178-2789
ispartof The Visual computer, 2024-07, Vol.40 (7), p.4857-4868
issn 0178-2789
1432-2315
language eng
recordid cdi_proquest_journals_3075787495
source SpringerLink Journals - AutoHoldings
subjects Annual precipitation
Artificial Intelligence
Artificial neural networks
Climate change
Computer Graphics
Computer Science
Datasets
Geometry
Image Processing and Computer Vision
Methods
Precipitation
Radiation
Satellites
Seasonal variations
Simulation
Summer
Synthesis
Terrain
Texture
Tiling
Topography
Vegetation
Winter
title Seasonal terrain texture synthesis via Köppen periodic conditioning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A32%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Seasonal%20terrain%20texture%20synthesis%20via%20K%C3%B6ppen%20periodic%20conditioning&rft.jtitle=The%20Visual%20computer&rft.au=Kanai,%20Toshiki&rft.date=2024-07-01&rft.volume=40&rft.issue=7&rft.spage=4857&rft.epage=4868&rft.pages=4857-4868&rft.issn=0178-2789&rft.eissn=1432-2315&rft_id=info:doi/10.1007/s00371-024-03485-1&rft_dat=%3Cproquest_cross%3E3075787495%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3075787495&rft_id=info:pmid/&rfr_iscdi=true