Seasonal terrain texture synthesis via Köppen periodic conditioning
This paper presents the first method for synthesizing seasonal transition of terrain textures for an input heightfield. Our method reproduces a seamless transition of terrain textures according to the seasons by learning measured data on the earth using a convolutional neural network. We attribute t...
Gespeichert in:
Veröffentlicht in: | The Visual computer 2024-07, Vol.40 (7), p.4857-4868 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4868 |
---|---|
container_issue | 7 |
container_start_page | 4857 |
container_title | The Visual computer |
container_volume | 40 |
creator | Kanai, Toshiki Endo, Yuki Kanamori, Yoshihiro |
description | This paper presents the first method for synthesizing seasonal transition of terrain textures for an input heightfield. Our method reproduces a seamless transition of terrain textures according to the seasons by learning measured data on the earth using a convolutional neural network. We attribute the main seasonal texture transition to vegetation and snow, and control the texture synthesis not only with the input heightfield but also with the annual temperature and precipitation based on
Köppen’s climate classification
as well as insolation at the location. We found that month-by-month synthesis yields incoherent transitions, while a naïve conditioning with explicit temporal information (e.g., month) degrades generalizability due to the north–south hemisphere difference. To address these issues, we introduce a simple solution—
periodic conditioning
on the annual data without explicit temporal information. Our experiments reveal that our method can synthesize plausible seasonal transitions of terrain textures. We also demonstrate large-scale texture synthesis by tiling the texture output. |
doi_str_mv | 10.1007/s00371-024-03485-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3075787495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3075787495</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-4905bce527b203afb83f8b07d6be0cc54c6e05397655492bfdfb64c9defacb123</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoOI6-gKuC6-jNX9MuZfzFARfqOiRpOmYY05q04ryYL-CLGa3gztXhwDmHez-EjgmcEgB5lgCYJBgox8B4JTDZQTPCGcWUEbGLZkBkhams6n10kNIaspe8nqGLB6dTF_SmGFyM2oes78MYXZG2YXh2yafizevi7vOj710oehd913hb2C40fvBd8GF1iPZavUnu6Ffn6Onq8nFxg5f317eL8yW2FGDAvAZhrBNUGgpMt6ZibWVANqVxYK3gtnQgWC1LIXhNTdu0puS2blyrrSGUzdHJtNvH7nV0aVDrboz5-KQYSCGr_JLIKTqlbOxSiq5VffQvOm4VAfVNS020VKalfmgpkktsKqUcDisX_6b_aX0B52RuqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075787495</pqid></control><display><type>article</type><title>Seasonal terrain texture synthesis via Köppen periodic conditioning</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kanai, Toshiki ; Endo, Yuki ; Kanamori, Yoshihiro</creator><creatorcontrib>Kanai, Toshiki ; Endo, Yuki ; Kanamori, Yoshihiro</creatorcontrib><description>This paper presents the first method for synthesizing seasonal transition of terrain textures for an input heightfield. Our method reproduces a seamless transition of terrain textures according to the seasons by learning measured data on the earth using a convolutional neural network. We attribute the main seasonal texture transition to vegetation and snow, and control the texture synthesis not only with the input heightfield but also with the annual temperature and precipitation based on
Köppen’s climate classification
as well as insolation at the location. We found that month-by-month synthesis yields incoherent transitions, while a naïve conditioning with explicit temporal information (e.g., month) degrades generalizability due to the north–south hemisphere difference. To address these issues, we introduce a simple solution—
periodic conditioning
on the annual data without explicit temporal information. Our experiments reveal that our method can synthesize plausible seasonal transitions of terrain textures. We also demonstrate large-scale texture synthesis by tiling the texture output.</description><identifier>ISSN: 0178-2789</identifier><identifier>EISSN: 1432-2315</identifier><identifier>DOI: 10.1007/s00371-024-03485-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Annual precipitation ; Artificial Intelligence ; Artificial neural networks ; Climate change ; Computer Graphics ; Computer Science ; Datasets ; Geometry ; Image Processing and Computer Vision ; Methods ; Precipitation ; Radiation ; Satellites ; Seasonal variations ; Simulation ; Summer ; Synthesis ; Terrain ; Texture ; Tiling ; Topography ; Vegetation ; Winter</subject><ispartof>The Visual computer, 2024-07, Vol.40 (7), p.4857-4868</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-4905bce527b203afb83f8b07d6be0cc54c6e05397655492bfdfb64c9defacb123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00371-024-03485-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00371-024-03485-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Kanai, Toshiki</creatorcontrib><creatorcontrib>Endo, Yuki</creatorcontrib><creatorcontrib>Kanamori, Yoshihiro</creatorcontrib><title>Seasonal terrain texture synthesis via Köppen periodic conditioning</title><title>The Visual computer</title><addtitle>Vis Comput</addtitle><description>This paper presents the first method for synthesizing seasonal transition of terrain textures for an input heightfield. Our method reproduces a seamless transition of terrain textures according to the seasons by learning measured data on the earth using a convolutional neural network. We attribute the main seasonal texture transition to vegetation and snow, and control the texture synthesis not only with the input heightfield but also with the annual temperature and precipitation based on
Köppen’s climate classification
as well as insolation at the location. We found that month-by-month synthesis yields incoherent transitions, while a naïve conditioning with explicit temporal information (e.g., month) degrades generalizability due to the north–south hemisphere difference. To address these issues, we introduce a simple solution—
periodic conditioning
on the annual data without explicit temporal information. Our experiments reveal that our method can synthesize plausible seasonal transitions of terrain textures. We also demonstrate large-scale texture synthesis by tiling the texture output.</description><subject>Annual precipitation</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Climate change</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Datasets</subject><subject>Geometry</subject><subject>Image Processing and Computer Vision</subject><subject>Methods</subject><subject>Precipitation</subject><subject>Radiation</subject><subject>Satellites</subject><subject>Seasonal variations</subject><subject>Simulation</subject><subject>Summer</subject><subject>Synthesis</subject><subject>Terrain</subject><subject>Texture</subject><subject>Tiling</subject><subject>Topography</subject><subject>Vegetation</subject><subject>Winter</subject><issn>0178-2789</issn><issn>1432-2315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAUhYMoOI6-gKuC6-jNX9MuZfzFARfqOiRpOmYY05q04ryYL-CLGa3gztXhwDmHez-EjgmcEgB5lgCYJBgox8B4JTDZQTPCGcWUEbGLZkBkhams6n10kNIaspe8nqGLB6dTF_SmGFyM2oes78MYXZG2YXh2yafizevi7vOj710oehd913hb2C40fvBd8GF1iPZavUnu6Ffn6Onq8nFxg5f317eL8yW2FGDAvAZhrBNUGgpMt6ZibWVANqVxYK3gtnQgWC1LIXhNTdu0puS2blyrrSGUzdHJtNvH7nV0aVDrboz5-KQYSCGr_JLIKTqlbOxSiq5VffQvOm4VAfVNS020VKalfmgpkktsKqUcDisX_6b_aX0B52RuqA</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Kanai, Toshiki</creator><creator>Endo, Yuki</creator><creator>Kanamori, Yoshihiro</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20240701</creationdate><title>Seasonal terrain texture synthesis via Köppen periodic conditioning</title><author>Kanai, Toshiki ; Endo, Yuki ; Kanamori, Yoshihiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-4905bce527b203afb83f8b07d6be0cc54c6e05397655492bfdfb64c9defacb123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Annual precipitation</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Climate change</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Datasets</topic><topic>Geometry</topic><topic>Image Processing and Computer Vision</topic><topic>Methods</topic><topic>Precipitation</topic><topic>Radiation</topic><topic>Satellites</topic><topic>Seasonal variations</topic><topic>Simulation</topic><topic>Summer</topic><topic>Synthesis</topic><topic>Terrain</topic><topic>Texture</topic><topic>Tiling</topic><topic>Topography</topic><topic>Vegetation</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kanai, Toshiki</creatorcontrib><creatorcontrib>Endo, Yuki</creatorcontrib><creatorcontrib>Kanamori, Yoshihiro</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Visual computer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kanai, Toshiki</au><au>Endo, Yuki</au><au>Kanamori, Yoshihiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Seasonal terrain texture synthesis via Köppen periodic conditioning</atitle><jtitle>The Visual computer</jtitle><stitle>Vis Comput</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>40</volume><issue>7</issue><spage>4857</spage><epage>4868</epage><pages>4857-4868</pages><issn>0178-2789</issn><eissn>1432-2315</eissn><abstract>This paper presents the first method for synthesizing seasonal transition of terrain textures for an input heightfield. Our method reproduces a seamless transition of terrain textures according to the seasons by learning measured data on the earth using a convolutional neural network. We attribute the main seasonal texture transition to vegetation and snow, and control the texture synthesis not only with the input heightfield but also with the annual temperature and precipitation based on
Köppen’s climate classification
as well as insolation at the location. We found that month-by-month synthesis yields incoherent transitions, while a naïve conditioning with explicit temporal information (e.g., month) degrades generalizability due to the north–south hemisphere difference. To address these issues, we introduce a simple solution—
periodic conditioning
on the annual data without explicit temporal information. Our experiments reveal that our method can synthesize plausible seasonal transitions of terrain textures. We also demonstrate large-scale texture synthesis by tiling the texture output.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00371-024-03485-1</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-2789 |
ispartof | The Visual computer, 2024-07, Vol.40 (7), p.4857-4868 |
issn | 0178-2789 1432-2315 |
language | eng |
recordid | cdi_proquest_journals_3075787495 |
source | SpringerLink Journals - AutoHoldings |
subjects | Annual precipitation Artificial Intelligence Artificial neural networks Climate change Computer Graphics Computer Science Datasets Geometry Image Processing and Computer Vision Methods Precipitation Radiation Satellites Seasonal variations Simulation Summer Synthesis Terrain Texture Tiling Topography Vegetation Winter |
title | Seasonal terrain texture synthesis via Köppen periodic conditioning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A32%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Seasonal%20terrain%20texture%20synthesis%20via%20K%C3%B6ppen%20periodic%20conditioning&rft.jtitle=The%20Visual%20computer&rft.au=Kanai,%20Toshiki&rft.date=2024-07-01&rft.volume=40&rft.issue=7&rft.spage=4857&rft.epage=4868&rft.pages=4857-4868&rft.issn=0178-2789&rft.eissn=1432-2315&rft_id=info:doi/10.1007/s00371-024-03485-1&rft_dat=%3Cproquest_cross%3E3075787495%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3075787495&rft_id=info:pmid/&rfr_iscdi=true |