Dual flow fusion graph convolutional network for traffic flow prediction

In recent decades, motor vehicle ownership has increased worldwide year by year, which causes that the accurate prediction of traffic flow on urban road networks becomes more important. However, the dual dependence on the micro layer and the macro layer creates a huge challenge for the prediction ta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of machine learning and cybernetics 2024-08, Vol.15 (8), p.3425-3437
Hauptverfasser: Zhao, Yuan, Li, Mingxin, Wen, Haoyang, Zhao, Hui, Wang, Yongjian, Wen, Shixi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3437
container_issue 8
container_start_page 3425
container_title International journal of machine learning and cybernetics
container_volume 15
creator Zhao, Yuan
Li, Mingxin
Wen, Haoyang
Zhao, Hui
Wang, Yongjian
Wen, Shixi
description In recent decades, motor vehicle ownership has increased worldwide year by year, which causes that the accurate prediction of traffic flow on urban road networks becomes more important. However, the dual dependence on the micro layer and the macro layer creates a huge challenge for the prediction task. Previous models lack comprehensive analysis of the macro features at different time granularities. In this paper, we propose a novel Dual Flow Fusion Graph Convolutional Network (DFFGCN) to solve this problem. For capturing more macro features, we build the interactions between the micro layer and the macro layer at more time granularities. Then the spatial-temporal normalization model is introduced to separate the temporal and spatial influences. Therefore, the proposed DFFGCN has a better learning ability compared with other advanced models. Finally, we give experiments to show the effectiveness and superiority of our proposed model. Experimental results on three traffic datasets demonstrate that DFFGCN can achieve state-of-the-art performance consistently. And the ablation studies confirm the importance of each element of DFFGCN.
doi_str_mv 10.1007/s13042-024-02101-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3075494375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3075494375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-3be3f82617cf6ab3a11d496ac31579cac49ff4e709704101065ef4b8520b7b2b3</originalsourceid><addsrcrecordid>eNp9UE1PwzAMjRBITGN_gFMlzgXno016RONjSJO4gMQtSrJkdJSmJC0b_34ZRXDDkmXLfu_JfgidY7jEAPwqYgqM5EBYSgw43x2hCRalyAWIl-PfnuNTNItxAylKoBTIBC1uBtVkrvHbzA2x9m22Dqp7zYxvP30z9GmS9q3ttz68Zc6HrA_KudqMnC7YVW0OqDN04lQT7eynTtHz3e3TfJEvH-8f5tfL3BAOfU61pU6QEnPjSqWpwnjFqlIZigteGWVY5RyzHCoOLP0CZWEd06IgoLkmmk7RxajbBf8x2NjLjR9COjJKCrxgFaO8SCgyokzwMQbrZBfqdxW-JAZ5ME2Opslkmvw2Te4SiY6kmMDt2oY_6X9Ye9nUb6Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075494375</pqid></control><display><type>article</type><title>Dual flow fusion graph convolutional network for traffic flow prediction</title><source>Springer Nature - Complete Springer Journals</source><creator>Zhao, Yuan ; Li, Mingxin ; Wen, Haoyang ; Zhao, Hui ; Wang, Yongjian ; Wen, Shixi</creator><creatorcontrib>Zhao, Yuan ; Li, Mingxin ; Wen, Haoyang ; Zhao, Hui ; Wang, Yongjian ; Wen, Shixi</creatorcontrib><description>In recent decades, motor vehicle ownership has increased worldwide year by year, which causes that the accurate prediction of traffic flow on urban road networks becomes more important. However, the dual dependence on the micro layer and the macro layer creates a huge challenge for the prediction task. Previous models lack comprehensive analysis of the macro features at different time granularities. In this paper, we propose a novel Dual Flow Fusion Graph Convolutional Network (DFFGCN) to solve this problem. For capturing more macro features, we build the interactions between the micro layer and the macro layer at more time granularities. Then the spatial-temporal normalization model is introduced to separate the temporal and spatial influences. Therefore, the proposed DFFGCN has a better learning ability compared with other advanced models. Finally, we give experiments to show the effectiveness and superiority of our proposed model. Experimental results on three traffic datasets demonstrate that DFFGCN can achieve state-of-the-art performance consistently. And the ablation studies confirm the importance of each element of DFFGCN.</description><identifier>ISSN: 1868-8071</identifier><identifier>EISSN: 1868-808X</identifier><identifier>DOI: 10.1007/s13042-024-02101-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Ablation ; Artificial Intelligence ; Artificial neural networks ; Complex Systems ; Computational Intelligence ; Control ; Deep learning ; Effectiveness ; Energy consumption ; Engineering ; Forecasting ; Mechatronics ; Motor vehicles ; Neural networks ; Original Article ; Pattern Recognition ; Regions ; Roads ; Robotics ; Smart cities ; Systems Biology ; Traffic flow</subject><ispartof>International journal of machine learning and cybernetics, 2024-08, Vol.15 (8), p.3425-3437</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-3be3f82617cf6ab3a11d496ac31579cac49ff4e709704101065ef4b8520b7b2b3</cites><orcidid>0000-0001-7997-5385</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13042-024-02101-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13042-024-02101-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Zhao, Yuan</creatorcontrib><creatorcontrib>Li, Mingxin</creatorcontrib><creatorcontrib>Wen, Haoyang</creatorcontrib><creatorcontrib>Zhao, Hui</creatorcontrib><creatorcontrib>Wang, Yongjian</creatorcontrib><creatorcontrib>Wen, Shixi</creatorcontrib><title>Dual flow fusion graph convolutional network for traffic flow prediction</title><title>International journal of machine learning and cybernetics</title><addtitle>Int. J. Mach. Learn. &amp; Cyber</addtitle><description>In recent decades, motor vehicle ownership has increased worldwide year by year, which causes that the accurate prediction of traffic flow on urban road networks becomes more important. However, the dual dependence on the micro layer and the macro layer creates a huge challenge for the prediction task. Previous models lack comprehensive analysis of the macro features at different time granularities. In this paper, we propose a novel Dual Flow Fusion Graph Convolutional Network (DFFGCN) to solve this problem. For capturing more macro features, we build the interactions between the micro layer and the macro layer at more time granularities. Then the spatial-temporal normalization model is introduced to separate the temporal and spatial influences. Therefore, the proposed DFFGCN has a better learning ability compared with other advanced models. Finally, we give experiments to show the effectiveness and superiority of our proposed model. Experimental results on three traffic datasets demonstrate that DFFGCN can achieve state-of-the-art performance consistently. And the ablation studies confirm the importance of each element of DFFGCN.</description><subject>Ablation</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Deep learning</subject><subject>Effectiveness</subject><subject>Energy consumption</subject><subject>Engineering</subject><subject>Forecasting</subject><subject>Mechatronics</subject><subject>Motor vehicles</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Pattern Recognition</subject><subject>Regions</subject><subject>Roads</subject><subject>Robotics</subject><subject>Smart cities</subject><subject>Systems Biology</subject><subject>Traffic flow</subject><issn>1868-8071</issn><issn>1868-808X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UE1PwzAMjRBITGN_gFMlzgXno016RONjSJO4gMQtSrJkdJSmJC0b_34ZRXDDkmXLfu_JfgidY7jEAPwqYgqM5EBYSgw43x2hCRalyAWIl-PfnuNTNItxAylKoBTIBC1uBtVkrvHbzA2x9m22Dqp7zYxvP30z9GmS9q3ttz68Zc6HrA_KudqMnC7YVW0OqDN04lQT7eynTtHz3e3TfJEvH-8f5tfL3BAOfU61pU6QEnPjSqWpwnjFqlIZigteGWVY5RyzHCoOLP0CZWEd06IgoLkmmk7RxajbBf8x2NjLjR9COjJKCrxgFaO8SCgyokzwMQbrZBfqdxW-JAZ5ME2Opslkmvw2Te4SiY6kmMDt2oY_6X9Ye9nUb6Y</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Zhao, Yuan</creator><creator>Li, Mingxin</creator><creator>Wen, Haoyang</creator><creator>Zhao, Hui</creator><creator>Wang, Yongjian</creator><creator>Wen, Shixi</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0001-7997-5385</orcidid></search><sort><creationdate>20240801</creationdate><title>Dual flow fusion graph convolutional network for traffic flow prediction</title><author>Zhao, Yuan ; Li, Mingxin ; Wen, Haoyang ; Zhao, Hui ; Wang, Yongjian ; Wen, Shixi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-3be3f82617cf6ab3a11d496ac31579cac49ff4e709704101065ef4b8520b7b2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ablation</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Deep learning</topic><topic>Effectiveness</topic><topic>Energy consumption</topic><topic>Engineering</topic><topic>Forecasting</topic><topic>Mechatronics</topic><topic>Motor vehicles</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Pattern Recognition</topic><topic>Regions</topic><topic>Roads</topic><topic>Robotics</topic><topic>Smart cities</topic><topic>Systems Biology</topic><topic>Traffic flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yuan</creatorcontrib><creatorcontrib>Li, Mingxin</creatorcontrib><creatorcontrib>Wen, Haoyang</creatorcontrib><creatorcontrib>Zhao, Hui</creatorcontrib><creatorcontrib>Wang, Yongjian</creatorcontrib><creatorcontrib>Wen, Shixi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>International journal of machine learning and cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yuan</au><au>Li, Mingxin</au><au>Wen, Haoyang</au><au>Zhao, Hui</au><au>Wang, Yongjian</au><au>Wen, Shixi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual flow fusion graph convolutional network for traffic flow prediction</atitle><jtitle>International journal of machine learning and cybernetics</jtitle><stitle>Int. J. Mach. Learn. &amp; Cyber</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>15</volume><issue>8</issue><spage>3425</spage><epage>3437</epage><pages>3425-3437</pages><issn>1868-8071</issn><eissn>1868-808X</eissn><abstract>In recent decades, motor vehicle ownership has increased worldwide year by year, which causes that the accurate prediction of traffic flow on urban road networks becomes more important. However, the dual dependence on the micro layer and the macro layer creates a huge challenge for the prediction task. Previous models lack comprehensive analysis of the macro features at different time granularities. In this paper, we propose a novel Dual Flow Fusion Graph Convolutional Network (DFFGCN) to solve this problem. For capturing more macro features, we build the interactions between the micro layer and the macro layer at more time granularities. Then the spatial-temporal normalization model is introduced to separate the temporal and spatial influences. Therefore, the proposed DFFGCN has a better learning ability compared with other advanced models. Finally, we give experiments to show the effectiveness and superiority of our proposed model. Experimental results on three traffic datasets demonstrate that DFFGCN can achieve state-of-the-art performance consistently. And the ablation studies confirm the importance of each element of DFFGCN.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13042-024-02101-x</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7997-5385</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1868-8071
ispartof International journal of machine learning and cybernetics, 2024-08, Vol.15 (8), p.3425-3437
issn 1868-8071
1868-808X
language eng
recordid cdi_proquest_journals_3075494375
source Springer Nature - Complete Springer Journals
subjects Ablation
Artificial Intelligence
Artificial neural networks
Complex Systems
Computational Intelligence
Control
Deep learning
Effectiveness
Energy consumption
Engineering
Forecasting
Mechatronics
Motor vehicles
Neural networks
Original Article
Pattern Recognition
Regions
Roads
Robotics
Smart cities
Systems Biology
Traffic flow
title Dual flow fusion graph convolutional network for traffic flow prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T09%3A12%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20flow%20fusion%20graph%20convolutional%20network%20for%20traffic%20flow%20prediction&rft.jtitle=International%20journal%20of%20machine%20learning%20and%20cybernetics&rft.au=Zhao,%20Yuan&rft.date=2024-08-01&rft.volume=15&rft.issue=8&rft.spage=3425&rft.epage=3437&rft.pages=3425-3437&rft.issn=1868-8071&rft.eissn=1868-808X&rft_id=info:doi/10.1007/s13042-024-02101-x&rft_dat=%3Cproquest_cross%3E3075494375%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3075494375&rft_id=info:pmid/&rfr_iscdi=true