Dual flow fusion graph convolutional network for traffic flow prediction
In recent decades, motor vehicle ownership has increased worldwide year by year, which causes that the accurate prediction of traffic flow on urban road networks becomes more important. However, the dual dependence on the micro layer and the macro layer creates a huge challenge for the prediction ta...
Gespeichert in:
Veröffentlicht in: | International journal of machine learning and cybernetics 2024-08, Vol.15 (8), p.3425-3437 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3437 |
---|---|
container_issue | 8 |
container_start_page | 3425 |
container_title | International journal of machine learning and cybernetics |
container_volume | 15 |
creator | Zhao, Yuan Li, Mingxin Wen, Haoyang Zhao, Hui Wang, Yongjian Wen, Shixi |
description | In recent decades, motor vehicle ownership has increased worldwide year by year, which causes that the accurate prediction of traffic flow on urban road networks becomes more important. However, the dual dependence on the micro layer and the macro layer creates a huge challenge for the prediction task. Previous models lack comprehensive analysis of the macro features at different time granularities. In this paper, we propose a novel Dual Flow Fusion Graph Convolutional Network (DFFGCN) to solve this problem. For capturing more macro features, we build the interactions between the micro layer and the macro layer at more time granularities. Then the spatial-temporal normalization model is introduced to separate the temporal and spatial influences. Therefore, the proposed DFFGCN has a better learning ability compared with other advanced models. Finally, we give experiments to show the effectiveness and superiority of our proposed model. Experimental results on three traffic datasets demonstrate that DFFGCN can achieve state-of-the-art performance consistently. And the ablation studies confirm the importance of each element of DFFGCN. |
doi_str_mv | 10.1007/s13042-024-02101-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3075494375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3075494375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-3be3f82617cf6ab3a11d496ac31579cac49ff4e709704101065ef4b8520b7b2b3</originalsourceid><addsrcrecordid>eNp9UE1PwzAMjRBITGN_gFMlzgXno016RONjSJO4gMQtSrJkdJSmJC0b_34ZRXDDkmXLfu_JfgidY7jEAPwqYgqM5EBYSgw43x2hCRalyAWIl-PfnuNTNItxAylKoBTIBC1uBtVkrvHbzA2x9m22Dqp7zYxvP30z9GmS9q3ttz68Zc6HrA_KudqMnC7YVW0OqDN04lQT7eynTtHz3e3TfJEvH-8f5tfL3BAOfU61pU6QEnPjSqWpwnjFqlIZigteGWVY5RyzHCoOLP0CZWEd06IgoLkmmk7RxajbBf8x2NjLjR9COjJKCrxgFaO8SCgyokzwMQbrZBfqdxW-JAZ5ME2Opslkmvw2Te4SiY6kmMDt2oY_6X9Ye9nUb6Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075494375</pqid></control><display><type>article</type><title>Dual flow fusion graph convolutional network for traffic flow prediction</title><source>Springer Nature - Complete Springer Journals</source><creator>Zhao, Yuan ; Li, Mingxin ; Wen, Haoyang ; Zhao, Hui ; Wang, Yongjian ; Wen, Shixi</creator><creatorcontrib>Zhao, Yuan ; Li, Mingxin ; Wen, Haoyang ; Zhao, Hui ; Wang, Yongjian ; Wen, Shixi</creatorcontrib><description>In recent decades, motor vehicle ownership has increased worldwide year by year, which causes that the accurate prediction of traffic flow on urban road networks becomes more important. However, the dual dependence on the micro layer and the macro layer creates a huge challenge for the prediction task. Previous models lack comprehensive analysis of the macro features at different time granularities. In this paper, we propose a novel Dual Flow Fusion Graph Convolutional Network (DFFGCN) to solve this problem. For capturing more macro features, we build the interactions between the micro layer and the macro layer at more time granularities. Then the spatial-temporal normalization model is introduced to separate the temporal and spatial influences. Therefore, the proposed DFFGCN has a better learning ability compared with other advanced models. Finally, we give experiments to show the effectiveness and superiority of our proposed model. Experimental results on three traffic datasets demonstrate that DFFGCN can achieve state-of-the-art performance consistently. And the ablation studies confirm the importance of each element of DFFGCN.</description><identifier>ISSN: 1868-8071</identifier><identifier>EISSN: 1868-808X</identifier><identifier>DOI: 10.1007/s13042-024-02101-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Ablation ; Artificial Intelligence ; Artificial neural networks ; Complex Systems ; Computational Intelligence ; Control ; Deep learning ; Effectiveness ; Energy consumption ; Engineering ; Forecasting ; Mechatronics ; Motor vehicles ; Neural networks ; Original Article ; Pattern Recognition ; Regions ; Roads ; Robotics ; Smart cities ; Systems Biology ; Traffic flow</subject><ispartof>International journal of machine learning and cybernetics, 2024-08, Vol.15 (8), p.3425-3437</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-3be3f82617cf6ab3a11d496ac31579cac49ff4e709704101065ef4b8520b7b2b3</cites><orcidid>0000-0001-7997-5385</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13042-024-02101-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13042-024-02101-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Zhao, Yuan</creatorcontrib><creatorcontrib>Li, Mingxin</creatorcontrib><creatorcontrib>Wen, Haoyang</creatorcontrib><creatorcontrib>Zhao, Hui</creatorcontrib><creatorcontrib>Wang, Yongjian</creatorcontrib><creatorcontrib>Wen, Shixi</creatorcontrib><title>Dual flow fusion graph convolutional network for traffic flow prediction</title><title>International journal of machine learning and cybernetics</title><addtitle>Int. J. Mach. Learn. & Cyber</addtitle><description>In recent decades, motor vehicle ownership has increased worldwide year by year, which causes that the accurate prediction of traffic flow on urban road networks becomes more important. However, the dual dependence on the micro layer and the macro layer creates a huge challenge for the prediction task. Previous models lack comprehensive analysis of the macro features at different time granularities. In this paper, we propose a novel Dual Flow Fusion Graph Convolutional Network (DFFGCN) to solve this problem. For capturing more macro features, we build the interactions between the micro layer and the macro layer at more time granularities. Then the spatial-temporal normalization model is introduced to separate the temporal and spatial influences. Therefore, the proposed DFFGCN has a better learning ability compared with other advanced models. Finally, we give experiments to show the effectiveness and superiority of our proposed model. Experimental results on three traffic datasets demonstrate that DFFGCN can achieve state-of-the-art performance consistently. And the ablation studies confirm the importance of each element of DFFGCN.</description><subject>Ablation</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Deep learning</subject><subject>Effectiveness</subject><subject>Energy consumption</subject><subject>Engineering</subject><subject>Forecasting</subject><subject>Mechatronics</subject><subject>Motor vehicles</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Pattern Recognition</subject><subject>Regions</subject><subject>Roads</subject><subject>Robotics</subject><subject>Smart cities</subject><subject>Systems Biology</subject><subject>Traffic flow</subject><issn>1868-8071</issn><issn>1868-808X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UE1PwzAMjRBITGN_gFMlzgXno016RONjSJO4gMQtSrJkdJSmJC0b_34ZRXDDkmXLfu_JfgidY7jEAPwqYgqM5EBYSgw43x2hCRalyAWIl-PfnuNTNItxAylKoBTIBC1uBtVkrvHbzA2x9m22Dqp7zYxvP30z9GmS9q3ttz68Zc6HrA_KudqMnC7YVW0OqDN04lQT7eynTtHz3e3TfJEvH-8f5tfL3BAOfU61pU6QEnPjSqWpwnjFqlIZigteGWVY5RyzHCoOLP0CZWEd06IgoLkmmk7RxajbBf8x2NjLjR9COjJKCrxgFaO8SCgyokzwMQbrZBfqdxW-JAZ5ME2Opslkmvw2Te4SiY6kmMDt2oY_6X9Ye9nUb6Y</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Zhao, Yuan</creator><creator>Li, Mingxin</creator><creator>Wen, Haoyang</creator><creator>Zhao, Hui</creator><creator>Wang, Yongjian</creator><creator>Wen, Shixi</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0001-7997-5385</orcidid></search><sort><creationdate>20240801</creationdate><title>Dual flow fusion graph convolutional network for traffic flow prediction</title><author>Zhao, Yuan ; Li, Mingxin ; Wen, Haoyang ; Zhao, Hui ; Wang, Yongjian ; Wen, Shixi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-3be3f82617cf6ab3a11d496ac31579cac49ff4e709704101065ef4b8520b7b2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ablation</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Deep learning</topic><topic>Effectiveness</topic><topic>Energy consumption</topic><topic>Engineering</topic><topic>Forecasting</topic><topic>Mechatronics</topic><topic>Motor vehicles</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Pattern Recognition</topic><topic>Regions</topic><topic>Roads</topic><topic>Robotics</topic><topic>Smart cities</topic><topic>Systems Biology</topic><topic>Traffic flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yuan</creatorcontrib><creatorcontrib>Li, Mingxin</creatorcontrib><creatorcontrib>Wen, Haoyang</creatorcontrib><creatorcontrib>Zhao, Hui</creatorcontrib><creatorcontrib>Wang, Yongjian</creatorcontrib><creatorcontrib>Wen, Shixi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>International journal of machine learning and cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yuan</au><au>Li, Mingxin</au><au>Wen, Haoyang</au><au>Zhao, Hui</au><au>Wang, Yongjian</au><au>Wen, Shixi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual flow fusion graph convolutional network for traffic flow prediction</atitle><jtitle>International journal of machine learning and cybernetics</jtitle><stitle>Int. J. Mach. Learn. & Cyber</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>15</volume><issue>8</issue><spage>3425</spage><epage>3437</epage><pages>3425-3437</pages><issn>1868-8071</issn><eissn>1868-808X</eissn><abstract>In recent decades, motor vehicle ownership has increased worldwide year by year, which causes that the accurate prediction of traffic flow on urban road networks becomes more important. However, the dual dependence on the micro layer and the macro layer creates a huge challenge for the prediction task. Previous models lack comprehensive analysis of the macro features at different time granularities. In this paper, we propose a novel Dual Flow Fusion Graph Convolutional Network (DFFGCN) to solve this problem. For capturing more macro features, we build the interactions between the micro layer and the macro layer at more time granularities. Then the spatial-temporal normalization model is introduced to separate the temporal and spatial influences. Therefore, the proposed DFFGCN has a better learning ability compared with other advanced models. Finally, we give experiments to show the effectiveness and superiority of our proposed model. Experimental results on three traffic datasets demonstrate that DFFGCN can achieve state-of-the-art performance consistently. And the ablation studies confirm the importance of each element of DFFGCN.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13042-024-02101-x</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7997-5385</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1868-8071 |
ispartof | International journal of machine learning and cybernetics, 2024-08, Vol.15 (8), p.3425-3437 |
issn | 1868-8071 1868-808X |
language | eng |
recordid | cdi_proquest_journals_3075494375 |
source | Springer Nature - Complete Springer Journals |
subjects | Ablation Artificial Intelligence Artificial neural networks Complex Systems Computational Intelligence Control Deep learning Effectiveness Energy consumption Engineering Forecasting Mechatronics Motor vehicles Neural networks Original Article Pattern Recognition Regions Roads Robotics Smart cities Systems Biology Traffic flow |
title | Dual flow fusion graph convolutional network for traffic flow prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T09%3A12%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20flow%20fusion%20graph%20convolutional%20network%20for%20traffic%20flow%20prediction&rft.jtitle=International%20journal%20of%20machine%20learning%20and%20cybernetics&rft.au=Zhao,%20Yuan&rft.date=2024-08-01&rft.volume=15&rft.issue=8&rft.spage=3425&rft.epage=3437&rft.pages=3425-3437&rft.issn=1868-8071&rft.eissn=1868-808X&rft_id=info:doi/10.1007/s13042-024-02101-x&rft_dat=%3Cproquest_cross%3E3075494375%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3075494375&rft_id=info:pmid/&rfr_iscdi=true |