Precise immobilization of metal single atoms into a porphyrinic metal-organic framework for an efficient alkene hydrosilylation

Alkene hydrosilylation is one of the most concise and atom-economical methods to synthesize organosilicon molecules. Herein, we reported the precise immobilization of metal single atoms (M-SAs; M = Ru, Rh, Ir, Pd, Pt, and Au) into a porphyrinic metal-organic framework (MOF) of PCN-222 (PCN = porous...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano research 2024-07, Vol.17 (7), p.5914-5921
Hauptverfasser: Chen, Chun-Ying, Mo, Qi-Jie, Li, Fu-Zhen, Song, Hai-Li, Zhang, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5921
container_issue 7
container_start_page 5914
container_title Nano research
container_volume 17
creator Chen, Chun-Ying
Mo, Qi-Jie
Li, Fu-Zhen
Song, Hai-Li
Zhang, Li
description Alkene hydrosilylation is one of the most concise and atom-economical methods to synthesize organosilicon molecules. Herein, we reported the precise immobilization of metal single atoms (M-SAs; M = Ru, Rh, Ir, Pd, Pt, and Au) into a porphyrinic metal-organic framework (MOF) of PCN-222 (PCN = porous coordination network), and then applied the resultant MOF composites of M-SAs@PCN-222 to alkene hydrosilylation. Under solvent-free conditions, Pt-SAs@PCN-222 displayed an especially high catalytic efficiency with the turnover frequency up to 119 s −1 and the maximum turnover number of 906,250 at room temperature. Experimental and theoretical studies revealed that there existed strong interactions between Pt-SAs@PCN-222 and the substrates, which helped to condense the substrates in the cavities of the porous catalysts. Further density functional theory calculations and molecular dynamics simulations disclosed that PCN-222 could transfer electrons to Pt-SAs to enhance the silane oxidative addition and drive the reaction to proceed smoothly via Chalk–Harrod pathway.
doi_str_mv 10.1007/s12274-024-6580-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3075493681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3075493681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-2e5a51c2c737ec54fc4823e2f5987f136e8a4bda0e6e125d81ce17a1e5cce3b33</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAczQfm93sUYpfUNCDnkOaTtq0u0lNVmS9-Nfduoon5zIz8LzzDi9C54xeMkqrq8w4rwpCeUFKqSjpD9CE1bUidKjD35nx4hid5LyhtOSsUBP0-ZTA-gzYt21c-MZ_mM7HgKPDLXSmwdmHVQPYdLHN2IcuYoN3Me3WffLB25EiMa3MfnPJtPAe0xa7mLAJGJzz1kPosGm2EACv-2WK2Td98210io6caTKc_fQperm9eZ7dk_nj3cPsek4sL1VHOEgjmeW2EhVYWThbKC6AO1mryjFRgjLFYmkolMC4XCpmgVWGgbQWxEKIKboY7-5SfH2D3OlNfEthsNSCVrKoRanYQLGRssOPOYHTu-Rbk3rNqN7nrMec9ZCz3ues-0HDR00e2LCC9Hf5f9EXat-Ebg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075493681</pqid></control><display><type>article</type><title>Precise immobilization of metal single atoms into a porphyrinic metal-organic framework for an efficient alkene hydrosilylation</title><source>Springer Nature - Complete Springer Journals</source><creator>Chen, Chun-Ying ; Mo, Qi-Jie ; Li, Fu-Zhen ; Song, Hai-Li ; Zhang, Li</creator><creatorcontrib>Chen, Chun-Ying ; Mo, Qi-Jie ; Li, Fu-Zhen ; Song, Hai-Li ; Zhang, Li</creatorcontrib><description>Alkene hydrosilylation is one of the most concise and atom-economical methods to synthesize organosilicon molecules. Herein, we reported the precise immobilization of metal single atoms (M-SAs; M = Ru, Rh, Ir, Pd, Pt, and Au) into a porphyrinic metal-organic framework (MOF) of PCN-222 (PCN = porous coordination network), and then applied the resultant MOF composites of M-SAs@PCN-222 to alkene hydrosilylation. Under solvent-free conditions, Pt-SAs@PCN-222 displayed an especially high catalytic efficiency with the turnover frequency up to 119 s −1 and the maximum turnover number of 906,250 at room temperature. Experimental and theoretical studies revealed that there existed strong interactions between Pt-SAs@PCN-222 and the substrates, which helped to condense the substrates in the cavities of the porous catalysts. Further density functional theory calculations and molecular dynamics simulations disclosed that PCN-222 could transfer electrons to Pt-SAs to enhance the silane oxidative addition and drive the reaction to proceed smoothly via Chalk–Harrod pathway.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-024-6580-y</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Alkenes ; Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Catalysis ; Catalysts ; Chemical synthesis ; Chemistry and Materials Science ; Condensed Matter Physics ; Density functional theory ; Efficiency ; Geometry ; Gold ; Hydrosilylation ; Immobilization ; Iridium ; Materials Science ; Metal-organic frameworks ; Metals ; Molecular dynamics ; Nanotechnology ; NMR ; Nuclear magnetic resonance ; Palladium ; Platinum ; Research Article ; Room temperature ; Simulation ; Substrates</subject><ispartof>Nano research, 2024-07, Vol.17 (7), p.5914-5921</ispartof><rights>Tsinghua University Press 2024</rights><rights>Tsinghua University Press 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-2e5a51c2c737ec54fc4823e2f5987f136e8a4bda0e6e125d81ce17a1e5cce3b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-024-6580-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-024-6580-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Chen, Chun-Ying</creatorcontrib><creatorcontrib>Mo, Qi-Jie</creatorcontrib><creatorcontrib>Li, Fu-Zhen</creatorcontrib><creatorcontrib>Song, Hai-Li</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><title>Precise immobilization of metal single atoms into a porphyrinic metal-organic framework for an efficient alkene hydrosilylation</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Alkene hydrosilylation is one of the most concise and atom-economical methods to synthesize organosilicon molecules. Herein, we reported the precise immobilization of metal single atoms (M-SAs; M = Ru, Rh, Ir, Pd, Pt, and Au) into a porphyrinic metal-organic framework (MOF) of PCN-222 (PCN = porous coordination network), and then applied the resultant MOF composites of M-SAs@PCN-222 to alkene hydrosilylation. Under solvent-free conditions, Pt-SAs@PCN-222 displayed an especially high catalytic efficiency with the turnover frequency up to 119 s −1 and the maximum turnover number of 906,250 at room temperature. Experimental and theoretical studies revealed that there existed strong interactions between Pt-SAs@PCN-222 and the substrates, which helped to condense the substrates in the cavities of the porous catalysts. Further density functional theory calculations and molecular dynamics simulations disclosed that PCN-222 could transfer electrons to Pt-SAs to enhance the silane oxidative addition and drive the reaction to proceed smoothly via Chalk–Harrod pathway.</description><subject>Alkenes</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Density functional theory</subject><subject>Efficiency</subject><subject>Geometry</subject><subject>Gold</subject><subject>Hydrosilylation</subject><subject>Immobilization</subject><subject>Iridium</subject><subject>Materials Science</subject><subject>Metal-organic frameworks</subject><subject>Metals</subject><subject>Molecular dynamics</subject><subject>Nanotechnology</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Palladium</subject><subject>Platinum</subject><subject>Research Article</subject><subject>Room temperature</subject><subject>Simulation</subject><subject>Substrates</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvAczQfm93sUYpfUNCDnkOaTtq0u0lNVmS9-Nfduoon5zIz8LzzDi9C54xeMkqrq8w4rwpCeUFKqSjpD9CE1bUidKjD35nx4hid5LyhtOSsUBP0-ZTA-gzYt21c-MZ_mM7HgKPDLXSmwdmHVQPYdLHN2IcuYoN3Me3WffLB25EiMa3MfnPJtPAe0xa7mLAJGJzz1kPosGm2EACv-2WK2Td98210io6caTKc_fQperm9eZ7dk_nj3cPsek4sL1VHOEgjmeW2EhVYWThbKC6AO1mryjFRgjLFYmkolMC4XCpmgVWGgbQWxEKIKboY7-5SfH2D3OlNfEthsNSCVrKoRanYQLGRssOPOYHTu-Rbk3rNqN7nrMec9ZCz3ues-0HDR00e2LCC9Hf5f9EXat-Ebg</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Chen, Chun-Ying</creator><creator>Mo, Qi-Jie</creator><creator>Li, Fu-Zhen</creator><creator>Song, Hai-Li</creator><creator>Zhang, Li</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope><scope>K9.</scope><scope>L7M</scope><scope>P64</scope></search><sort><creationdate>20240701</creationdate><title>Precise immobilization of metal single atoms into a porphyrinic metal-organic framework for an efficient alkene hydrosilylation</title><author>Chen, Chun-Ying ; Mo, Qi-Jie ; Li, Fu-Zhen ; Song, Hai-Li ; Zhang, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-2e5a51c2c737ec54fc4823e2f5987f136e8a4bda0e6e125d81ce17a1e5cce3b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alkenes</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Density functional theory</topic><topic>Efficiency</topic><topic>Geometry</topic><topic>Gold</topic><topic>Hydrosilylation</topic><topic>Immobilization</topic><topic>Iridium</topic><topic>Materials Science</topic><topic>Metal-organic frameworks</topic><topic>Metals</topic><topic>Molecular dynamics</topic><topic>Nanotechnology</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Palladium</topic><topic>Platinum</topic><topic>Research Article</topic><topic>Room temperature</topic><topic>Simulation</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Chun-Ying</creatorcontrib><creatorcontrib>Mo, Qi-Jie</creatorcontrib><creatorcontrib>Li, Fu-Zhen</creatorcontrib><creatorcontrib>Song, Hai-Li</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Chun-Ying</au><au>Mo, Qi-Jie</au><au>Li, Fu-Zhen</au><au>Song, Hai-Li</au><au>Zhang, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Precise immobilization of metal single atoms into a porphyrinic metal-organic framework for an efficient alkene hydrosilylation</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>17</volume><issue>7</issue><spage>5914</spage><epage>5921</epage><pages>5914-5921</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Alkene hydrosilylation is one of the most concise and atom-economical methods to synthesize organosilicon molecules. Herein, we reported the precise immobilization of metal single atoms (M-SAs; M = Ru, Rh, Ir, Pd, Pt, and Au) into a porphyrinic metal-organic framework (MOF) of PCN-222 (PCN = porous coordination network), and then applied the resultant MOF composites of M-SAs@PCN-222 to alkene hydrosilylation. Under solvent-free conditions, Pt-SAs@PCN-222 displayed an especially high catalytic efficiency with the turnover frequency up to 119 s −1 and the maximum turnover number of 906,250 at room temperature. Experimental and theoretical studies revealed that there existed strong interactions between Pt-SAs@PCN-222 and the substrates, which helped to condense the substrates in the cavities of the porous catalysts. Further density functional theory calculations and molecular dynamics simulations disclosed that PCN-222 could transfer electrons to Pt-SAs to enhance the silane oxidative addition and drive the reaction to proceed smoothly via Chalk–Harrod pathway.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-024-6580-y</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof Nano research, 2024-07, Vol.17 (7), p.5914-5921
issn 1998-0124
1998-0000
language eng
recordid cdi_proquest_journals_3075493681
source Springer Nature - Complete Springer Journals
subjects Alkenes
Atomic/Molecular Structure and Spectra
Biomedicine
Biotechnology
Catalysis
Catalysts
Chemical synthesis
Chemistry and Materials Science
Condensed Matter Physics
Density functional theory
Efficiency
Geometry
Gold
Hydrosilylation
Immobilization
Iridium
Materials Science
Metal-organic frameworks
Metals
Molecular dynamics
Nanotechnology
NMR
Nuclear magnetic resonance
Palladium
Platinum
Research Article
Room temperature
Simulation
Substrates
title Precise immobilization of metal single atoms into a porphyrinic metal-organic framework for an efficient alkene hydrosilylation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A29%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Precise%20immobilization%20of%20metal%20single%20atoms%20into%20a%20porphyrinic%20metal-organic%20framework%20for%20an%20efficient%20alkene%20hydrosilylation&rft.jtitle=Nano%20research&rft.au=Chen,%20Chun-Ying&rft.date=2024-07-01&rft.volume=17&rft.issue=7&rft.spage=5914&rft.epage=5921&rft.pages=5914-5921&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-024-6580-y&rft_dat=%3Cproquest_cross%3E3075493681%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3075493681&rft_id=info:pmid/&rfr_iscdi=true