Bi2O3/g-C3N4 hollow core–shell Z-scheme heterojunction for photocatalytic uranium extraction
Photocatalytic uranium extraction from radioactive nuclear wastewater and seawater is critical for promoting the sustainable advancement of nuclear industry, but the complexity of real-world environments, particularly the occurrence of anoxic and oxygen-enriched states, presents significant challeng...
Gespeichert in:
Veröffentlicht in: | Nano research 2024-07, Vol.17 (7), p.5845-5855 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5855 |
---|---|
container_issue | 7 |
container_start_page | 5845 |
container_title | Nano research |
container_volume | 17 |
creator | Fu, Hao Pan, Yuehua Cai, Zhenyu Deng, Yuxiang Hou, Minchen Wei, Yuezhou Fujita, Toyohisa Ning, Shunyan Wang, Youbin Zhang, Shaolong Wang, Xinpeng |
description | Photocatalytic uranium extraction from radioactive nuclear wastewater and seawater is critical for promoting the sustainable advancement of nuclear industry, but the complexity of real-world environments, particularly the occurrence of anoxic and oxygen-enriched states, presents significant challenges to effective uranium extraction. Here, a layered hollow core–shell structure of Bi
2
O
3
/g-C
3
N
4
Z-scheme heterojunction photocatalyst has been designed and successfully applied for photocatalytic uranium extraction in both aerobic and oxygen-free conditions, and the extraction efficiency of uranium can reach 98.4% and 99.0%, respectively. Moreover, the photocatalyst still has ultra-high extraction efficiency under the influence of pH, inorganic ions, and other factors. The exceptional capability for uranium extraction is on the one hand due to the distinctive hollow core–shell architecture, which furnishes an abundant quantity of active sites. On the other hand, benefiting from the suitable band gap structure brought by the construction of Z-scheme heterojunction, Bi
2
O
3
/g-C
3
N
4
exhibits current densities (1.00 µA/cm
2
) that are 5.26 and 3.85 times greater than Bi
2
O
3
and g-C
3
N
4
, respectively, and the directional migration mode of Z-scheme carriers significantly prolongs the lifetime of photogenerated charges (1.53 ns), which separately surpass the pure samples by factors of 5.10 and 3.19. Furthermore, the reaction mechanism and reaction process of photocatalytic uranium extraction are investigated in the presence and absence of oxygen, respectively. |
doi_str_mv | 10.1007/s12274-024-6545-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3075491525</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3075491525</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-333c3ea4ef7408ef26e600bcbbfc59ff77903e4ed1f3767dc7985cbb73a900f3</originalsourceid><addsrcrecordid>eNp1kEtOwzAQhi0EEqVwAHaWWJv6lThZQsVLquimKxZYrjtuUqVxsR1Bd9yBG3ISUgpixWxmpPn-GelD6JzRS0apGkXGuZKEcknyTGaEHaABK8uC0L4Of2fG5TE6iXFFac6ZLAbo-brmUzFakrF4lLjyTeNfsfUBPt8_YgVNg59ItBWsAVeQIPhV19pU-xY7H_Cm8slbk0yzTbXFXTBt3a0xvKVgvqlTdORME-Hspw_R7PZmNr4nk-ndw_hqQqxgeSJCCCvASHBK0gIczyGndG7nc2ez0jmlSipAwoI5oXK1sKossn6rhCkpdWKILvZnN8G_dBCTXvkutP1HLajKZMkynvUU21M2-BgDOL0J9dqErWZU7yzqvUXdW9Q7i5r1Gb7PxJ5tlxD-Lv8f-gLXmnaN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075491525</pqid></control><display><type>article</type><title>Bi2O3/g-C3N4 hollow core–shell Z-scheme heterojunction for photocatalytic uranium extraction</title><source>SpringerLink Journals - AutoHoldings</source><creator>Fu, Hao ; Pan, Yuehua ; Cai, Zhenyu ; Deng, Yuxiang ; Hou, Minchen ; Wei, Yuezhou ; Fujita, Toyohisa ; Ning, Shunyan ; Wang, Youbin ; Zhang, Shaolong ; Wang, Xinpeng</creator><creatorcontrib>Fu, Hao ; Pan, Yuehua ; Cai, Zhenyu ; Deng, Yuxiang ; Hou, Minchen ; Wei, Yuezhou ; Fujita, Toyohisa ; Ning, Shunyan ; Wang, Youbin ; Zhang, Shaolong ; Wang, Xinpeng</creatorcontrib><description>Photocatalytic uranium extraction from radioactive nuclear wastewater and seawater is critical for promoting the sustainable advancement of nuclear industry, but the complexity of real-world environments, particularly the occurrence of anoxic and oxygen-enriched states, presents significant challenges to effective uranium extraction. Here, a layered hollow core–shell structure of Bi
2
O
3
/g-C
3
N
4
Z-scheme heterojunction photocatalyst has been designed and successfully applied for photocatalytic uranium extraction in both aerobic and oxygen-free conditions, and the extraction efficiency of uranium can reach 98.4% and 99.0%, respectively. Moreover, the photocatalyst still has ultra-high extraction efficiency under the influence of pH, inorganic ions, and other factors. The exceptional capability for uranium extraction is on the one hand due to the distinctive hollow core–shell architecture, which furnishes an abundant quantity of active sites. On the other hand, benefiting from the suitable band gap structure brought by the construction of Z-scheme heterojunction, Bi
2
O
3
/g-C
3
N
4
exhibits current densities (1.00 µA/cm
2
) that are 5.26 and 3.85 times greater than Bi
2
O
3
and g-C
3
N
4
, respectively, and the directional migration mode of Z-scheme carriers significantly prolongs the lifetime of photogenerated charges (1.53 ns), which separately surpass the pure samples by factors of 5.10 and 3.19. Furthermore, the reaction mechanism and reaction process of photocatalytic uranium extraction are investigated in the presence and absence of oxygen, respectively.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-024-6545-1</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Bismuth trioxide ; Carbon nitride ; Chemical analysis ; Chemistry and Materials Science ; Condensed Matter Physics ; Core-shell structure ; Effectiveness ; Heterojunctions ; Materials Science ; Nanotechnology ; Oxygen ; Oxygen enrichment ; Photocatalysis ; Photocatalysts ; Radioactive wastewaters ; Reaction mechanisms ; Research Article ; Seawater ; Uranium ; Water analysis</subject><ispartof>Nano research, 2024-07, Vol.17 (7), p.5845-5855</ispartof><rights>Tsinghua University Press 2024</rights><rights>Tsinghua University Press 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-333c3ea4ef7408ef26e600bcbbfc59ff77903e4ed1f3767dc7985cbb73a900f3</citedby><cites>FETCH-LOGICAL-c316t-333c3ea4ef7408ef26e600bcbbfc59ff77903e4ed1f3767dc7985cbb73a900f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-024-6545-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-024-6545-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Fu, Hao</creatorcontrib><creatorcontrib>Pan, Yuehua</creatorcontrib><creatorcontrib>Cai, Zhenyu</creatorcontrib><creatorcontrib>Deng, Yuxiang</creatorcontrib><creatorcontrib>Hou, Minchen</creatorcontrib><creatorcontrib>Wei, Yuezhou</creatorcontrib><creatorcontrib>Fujita, Toyohisa</creatorcontrib><creatorcontrib>Ning, Shunyan</creatorcontrib><creatorcontrib>Wang, Youbin</creatorcontrib><creatorcontrib>Zhang, Shaolong</creatorcontrib><creatorcontrib>Wang, Xinpeng</creatorcontrib><title>Bi2O3/g-C3N4 hollow core–shell Z-scheme heterojunction for photocatalytic uranium extraction</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Photocatalytic uranium extraction from radioactive nuclear wastewater and seawater is critical for promoting the sustainable advancement of nuclear industry, but the complexity of real-world environments, particularly the occurrence of anoxic and oxygen-enriched states, presents significant challenges to effective uranium extraction. Here, a layered hollow core–shell structure of Bi
2
O
3
/g-C
3
N
4
Z-scheme heterojunction photocatalyst has been designed and successfully applied for photocatalytic uranium extraction in both aerobic and oxygen-free conditions, and the extraction efficiency of uranium can reach 98.4% and 99.0%, respectively. Moreover, the photocatalyst still has ultra-high extraction efficiency under the influence of pH, inorganic ions, and other factors. The exceptional capability for uranium extraction is on the one hand due to the distinctive hollow core–shell architecture, which furnishes an abundant quantity of active sites. On the other hand, benefiting from the suitable band gap structure brought by the construction of Z-scheme heterojunction, Bi
2
O
3
/g-C
3
N
4
exhibits current densities (1.00 µA/cm
2
) that are 5.26 and 3.85 times greater than Bi
2
O
3
and g-C
3
N
4
, respectively, and the directional migration mode of Z-scheme carriers significantly prolongs the lifetime of photogenerated charges (1.53 ns), which separately surpass the pure samples by factors of 5.10 and 3.19. Furthermore, the reaction mechanism and reaction process of photocatalytic uranium extraction are investigated in the presence and absence of oxygen, respectively.</description><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Bismuth trioxide</subject><subject>Carbon nitride</subject><subject>Chemical analysis</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Core-shell structure</subject><subject>Effectiveness</subject><subject>Heterojunctions</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Oxygen</subject><subject>Oxygen enrichment</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>Radioactive wastewaters</subject><subject>Reaction mechanisms</subject><subject>Research Article</subject><subject>Seawater</subject><subject>Uranium</subject><subject>Water analysis</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kEtOwzAQhi0EEqVwAHaWWJv6lThZQsVLquimKxZYrjtuUqVxsR1Bd9yBG3ISUgpixWxmpPn-GelD6JzRS0apGkXGuZKEcknyTGaEHaABK8uC0L4Of2fG5TE6iXFFac6ZLAbo-brmUzFakrF4lLjyTeNfsfUBPt8_YgVNg59ItBWsAVeQIPhV19pU-xY7H_Cm8slbk0yzTbXFXTBt3a0xvKVgvqlTdORME-Hspw_R7PZmNr4nk-ndw_hqQqxgeSJCCCvASHBK0gIczyGndG7nc2ez0jmlSipAwoI5oXK1sKossn6rhCkpdWKILvZnN8G_dBCTXvkutP1HLajKZMkynvUU21M2-BgDOL0J9dqErWZU7yzqvUXdW9Q7i5r1Gb7PxJ5tlxD-Lv8f-gLXmnaN</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Fu, Hao</creator><creator>Pan, Yuehua</creator><creator>Cai, Zhenyu</creator><creator>Deng, Yuxiang</creator><creator>Hou, Minchen</creator><creator>Wei, Yuezhou</creator><creator>Fujita, Toyohisa</creator><creator>Ning, Shunyan</creator><creator>Wang, Youbin</creator><creator>Zhang, Shaolong</creator><creator>Wang, Xinpeng</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope><scope>K9.</scope><scope>L7M</scope><scope>P64</scope></search><sort><creationdate>20240701</creationdate><title>Bi2O3/g-C3N4 hollow core–shell Z-scheme heterojunction for photocatalytic uranium extraction</title><author>Fu, Hao ; Pan, Yuehua ; Cai, Zhenyu ; Deng, Yuxiang ; Hou, Minchen ; Wei, Yuezhou ; Fujita, Toyohisa ; Ning, Shunyan ; Wang, Youbin ; Zhang, Shaolong ; Wang, Xinpeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-333c3ea4ef7408ef26e600bcbbfc59ff77903e4ed1f3767dc7985cbb73a900f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Bismuth trioxide</topic><topic>Carbon nitride</topic><topic>Chemical analysis</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Core-shell structure</topic><topic>Effectiveness</topic><topic>Heterojunctions</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Oxygen</topic><topic>Oxygen enrichment</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>Radioactive wastewaters</topic><topic>Reaction mechanisms</topic><topic>Research Article</topic><topic>Seawater</topic><topic>Uranium</topic><topic>Water analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Hao</creatorcontrib><creatorcontrib>Pan, Yuehua</creatorcontrib><creatorcontrib>Cai, Zhenyu</creatorcontrib><creatorcontrib>Deng, Yuxiang</creatorcontrib><creatorcontrib>Hou, Minchen</creatorcontrib><creatorcontrib>Wei, Yuezhou</creatorcontrib><creatorcontrib>Fujita, Toyohisa</creatorcontrib><creatorcontrib>Ning, Shunyan</creatorcontrib><creatorcontrib>Wang, Youbin</creatorcontrib><creatorcontrib>Zhang, Shaolong</creatorcontrib><creatorcontrib>Wang, Xinpeng</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Hao</au><au>Pan, Yuehua</au><au>Cai, Zhenyu</au><au>Deng, Yuxiang</au><au>Hou, Minchen</au><au>Wei, Yuezhou</au><au>Fujita, Toyohisa</au><au>Ning, Shunyan</au><au>Wang, Youbin</au><au>Zhang, Shaolong</au><au>Wang, Xinpeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bi2O3/g-C3N4 hollow core–shell Z-scheme heterojunction for photocatalytic uranium extraction</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>17</volume><issue>7</issue><spage>5845</spage><epage>5855</epage><pages>5845-5855</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Photocatalytic uranium extraction from radioactive nuclear wastewater and seawater is critical for promoting the sustainable advancement of nuclear industry, but the complexity of real-world environments, particularly the occurrence of anoxic and oxygen-enriched states, presents significant challenges to effective uranium extraction. Here, a layered hollow core–shell structure of Bi
2
O
3
/g-C
3
N
4
Z-scheme heterojunction photocatalyst has been designed and successfully applied for photocatalytic uranium extraction in both aerobic and oxygen-free conditions, and the extraction efficiency of uranium can reach 98.4% and 99.0%, respectively. Moreover, the photocatalyst still has ultra-high extraction efficiency under the influence of pH, inorganic ions, and other factors. The exceptional capability for uranium extraction is on the one hand due to the distinctive hollow core–shell architecture, which furnishes an abundant quantity of active sites. On the other hand, benefiting from the suitable band gap structure brought by the construction of Z-scheme heterojunction, Bi
2
O
3
/g-C
3
N
4
exhibits current densities (1.00 µA/cm
2
) that are 5.26 and 3.85 times greater than Bi
2
O
3
and g-C
3
N
4
, respectively, and the directional migration mode of Z-scheme carriers significantly prolongs the lifetime of photogenerated charges (1.53 ns), which separately surpass the pure samples by factors of 5.10 and 3.19. Furthermore, the reaction mechanism and reaction process of photocatalytic uranium extraction are investigated in the presence and absence of oxygen, respectively.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-024-6545-1</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1998-0124 |
ispartof | Nano research, 2024-07, Vol.17 (7), p.5845-5855 |
issn | 1998-0124 1998-0000 |
language | eng |
recordid | cdi_proquest_journals_3075491525 |
source | SpringerLink Journals - AutoHoldings |
subjects | Atomic/Molecular Structure and Spectra Biomedicine Biotechnology Bismuth trioxide Carbon nitride Chemical analysis Chemistry and Materials Science Condensed Matter Physics Core-shell structure Effectiveness Heterojunctions Materials Science Nanotechnology Oxygen Oxygen enrichment Photocatalysis Photocatalysts Radioactive wastewaters Reaction mechanisms Research Article Seawater Uranium Water analysis |
title | Bi2O3/g-C3N4 hollow core–shell Z-scheme heterojunction for photocatalytic uranium extraction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A58%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bi2O3/g-C3N4%20hollow%20core%E2%80%93shell%20Z-scheme%20heterojunction%20for%20photocatalytic%20uranium%20extraction&rft.jtitle=Nano%20research&rft.au=Fu,%20Hao&rft.date=2024-07-01&rft.volume=17&rft.issue=7&rft.spage=5845&rft.epage=5855&rft.pages=5845-5855&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-024-6545-1&rft_dat=%3Cproquest_cross%3E3075491525%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3075491525&rft_id=info:pmid/&rfr_iscdi=true |