Snap-back repellers and chaos in a class of discrete-time memristor circuits

In the last decade the flux-charge analysis method (FCAM) has been successfully used to show that continuous-time (CT) memristor circuits possess for structural reasons first integrals (invariants of motion) and their state space can be foliated in invariant manifolds. Consequently, they display an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2024-08, Vol.112 (15), p.13519-13537
Hauptverfasser: Di Marco, Mauro, Forti, Mauro, Pancioni, Luca, Tesi, Alberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13537
container_issue 15
container_start_page 13519
container_title Nonlinear dynamics
container_volume 112
creator Di Marco, Mauro
Forti, Mauro
Pancioni, Luca
Tesi, Alberto
description In the last decade the flux-charge analysis method (FCAM) has been successfully used to show that continuous-time (CT) memristor circuits possess for structural reasons first integrals (invariants of motion) and their state space can be foliated in invariant manifolds. Consequently, they display an initial condition dependent dynamics, extreme multistability (coexistence of infinitely many attractors) and bifurcations without parameters. Recently, a new discretization scheme has been introduced for CT memristor circuits, guaranteeing that the first integrals are preserved exactly in the discretization. On this basis, FCAM has been extended to discrete-time (DT) memristor circuits showing that they also are characterized by invariant manifolds and they display extreme multistability and bifurcations without parameters. This manuscript considers the maps obtained via DT-FCAM for a circuit with a flux-controlled memristor and a capacitor and it provides a thorough and rigorous investigation of the presence of chaotic dynamics. In particular, parameter ranges are obtained where the maps have snap-back repellers at some fixed points, thus implying that they display chaos in the Marotto and also in the Li–Yorke sense. Bifurcation diagrams are provided where it is possible to analytically identify relevant points in correspondence with the appearance of snap-back repellers and the onset of chaos. The dependence of the bifurcation diagrams and snap-back repellers upon the circuit initial conditions and the related manifold is also studied.
doi_str_mv 10.1007/s11071-024-09745-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3075478915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3075478915</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-944f598f20f080204598389770f681a507f7df995fc0146df22562eeaf12fc393</originalsourceid><addsrcrecordid>eNp9kMtKBDEQRYMoOI7-gKuA62jl1eksRXzBgAsVZhdiOtEe-2WqZzF_bzstuHNVFHXuLTiEnHO45ADmCjkHwxkIxcAapdnugCy4NpKJwq4PyQLs_gTrY3KCuAEAKaBckNVz5wf25sMnzXGITRMzUt9VNHz4HmndUU9D4xFpn2hVY8hxjGys20jb2OYaxz7TUOewrUc8JUfJNxjPfueSvN7dvtw8sNXT_ePN9YoFodTIrFJJ2zIJSFCCADUtsrTGQCpK7jWYZKpkrU4BuCqqJIQuRIw-cZGCtHJJLubeIfdf24ij2_Tb3E0vnQSjlSkt1xMlZirkHjHH5IZctz7vHAf3Y83N1txkze2tud0UknMIJ7h7j_mv-p_UN5M-bz8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075478915</pqid></control><display><type>article</type><title>Snap-back repellers and chaos in a class of discrete-time memristor circuits</title><source>SpringerLink Journals - AutoHoldings</source><creator>Di Marco, Mauro ; Forti, Mauro ; Pancioni, Luca ; Tesi, Alberto</creator><creatorcontrib>Di Marco, Mauro ; Forti, Mauro ; Pancioni, Luca ; Tesi, Alberto</creatorcontrib><description>In the last decade the flux-charge analysis method (FCAM) has been successfully used to show that continuous-time (CT) memristor circuits possess for structural reasons first integrals (invariants of motion) and their state space can be foliated in invariant manifolds. Consequently, they display an initial condition dependent dynamics, extreme multistability (coexistence of infinitely many attractors) and bifurcations without parameters. Recently, a new discretization scheme has been introduced for CT memristor circuits, guaranteeing that the first integrals are preserved exactly in the discretization. On this basis, FCAM has been extended to discrete-time (DT) memristor circuits showing that they also are characterized by invariant manifolds and they display extreme multistability and bifurcations without parameters. This manuscript considers the maps obtained via DT-FCAM for a circuit with a flux-controlled memristor and a capacitor and it provides a thorough and rigorous investigation of the presence of chaotic dynamics. In particular, parameter ranges are obtained where the maps have snap-back repellers at some fixed points, thus implying that they display chaos in the Marotto and also in the Li–Yorke sense. Bifurcation diagrams are provided where it is possible to analytically identify relevant points in correspondence with the appearance of snap-back repellers and the onset of chaos. The dependence of the bifurcation diagrams and snap-back repellers upon the circuit initial conditions and the related manifold is also studied.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-024-09745-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Bifurcations ; Circuits ; Classical Mechanics ; Control ; Discretization ; Dynamical Systems ; Engineering ; Initial conditions ; Integrals ; Invariants ; Manifolds ; Mechanical Engineering ; Memristors ; Parameters ; Vibration</subject><ispartof>Nonlinear dynamics, 2024-08, Vol.112 (15), p.13519-13537</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-944f598f20f080204598389770f681a507f7df995fc0146df22562eeaf12fc393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-024-09745-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-024-09745-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Di Marco, Mauro</creatorcontrib><creatorcontrib>Forti, Mauro</creatorcontrib><creatorcontrib>Pancioni, Luca</creatorcontrib><creatorcontrib>Tesi, Alberto</creatorcontrib><title>Snap-back repellers and chaos in a class of discrete-time memristor circuits</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>In the last decade the flux-charge analysis method (FCAM) has been successfully used to show that continuous-time (CT) memristor circuits possess for structural reasons first integrals (invariants of motion) and their state space can be foliated in invariant manifolds. Consequently, they display an initial condition dependent dynamics, extreme multistability (coexistence of infinitely many attractors) and bifurcations without parameters. Recently, a new discretization scheme has been introduced for CT memristor circuits, guaranteeing that the first integrals are preserved exactly in the discretization. On this basis, FCAM has been extended to discrete-time (DT) memristor circuits showing that they also are characterized by invariant manifolds and they display extreme multistability and bifurcations without parameters. This manuscript considers the maps obtained via DT-FCAM for a circuit with a flux-controlled memristor and a capacitor and it provides a thorough and rigorous investigation of the presence of chaotic dynamics. In particular, parameter ranges are obtained where the maps have snap-back repellers at some fixed points, thus implying that they display chaos in the Marotto and also in the Li–Yorke sense. Bifurcation diagrams are provided where it is possible to analytically identify relevant points in correspondence with the appearance of snap-back repellers and the onset of chaos. The dependence of the bifurcation diagrams and snap-back repellers upon the circuit initial conditions and the related manifold is also studied.</description><subject>Automotive Engineering</subject><subject>Bifurcations</subject><subject>Circuits</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Discretization</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Initial conditions</subject><subject>Integrals</subject><subject>Invariants</subject><subject>Manifolds</subject><subject>Mechanical Engineering</subject><subject>Memristors</subject><subject>Parameters</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kMtKBDEQRYMoOI7-gKuA62jl1eksRXzBgAsVZhdiOtEe-2WqZzF_bzstuHNVFHXuLTiEnHO45ADmCjkHwxkIxcAapdnugCy4NpKJwq4PyQLs_gTrY3KCuAEAKaBckNVz5wf25sMnzXGITRMzUt9VNHz4HmndUU9D4xFpn2hVY8hxjGys20jb2OYaxz7TUOewrUc8JUfJNxjPfueSvN7dvtw8sNXT_ePN9YoFodTIrFJJ2zIJSFCCADUtsrTGQCpK7jWYZKpkrU4BuCqqJIQuRIw-cZGCtHJJLubeIfdf24ij2_Tb3E0vnQSjlSkt1xMlZirkHjHH5IZctz7vHAf3Y83N1txkze2tud0UknMIJ7h7j_mv-p_UN5M-bz8</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Di Marco, Mauro</creator><creator>Forti, Mauro</creator><creator>Pancioni, Luca</creator><creator>Tesi, Alberto</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240801</creationdate><title>Snap-back repellers and chaos in a class of discrete-time memristor circuits</title><author>Di Marco, Mauro ; Forti, Mauro ; Pancioni, Luca ; Tesi, Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-944f598f20f080204598389770f681a507f7df995fc0146df22562eeaf12fc393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automotive Engineering</topic><topic>Bifurcations</topic><topic>Circuits</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Discretization</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Initial conditions</topic><topic>Integrals</topic><topic>Invariants</topic><topic>Manifolds</topic><topic>Mechanical Engineering</topic><topic>Memristors</topic><topic>Parameters</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Marco, Mauro</creatorcontrib><creatorcontrib>Forti, Mauro</creatorcontrib><creatorcontrib>Pancioni, Luca</creatorcontrib><creatorcontrib>Tesi, Alberto</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Marco, Mauro</au><au>Forti, Mauro</au><au>Pancioni, Luca</au><au>Tesi, Alberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Snap-back repellers and chaos in a class of discrete-time memristor circuits</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>112</volume><issue>15</issue><spage>13519</spage><epage>13537</epage><pages>13519-13537</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>In the last decade the flux-charge analysis method (FCAM) has been successfully used to show that continuous-time (CT) memristor circuits possess for structural reasons first integrals (invariants of motion) and their state space can be foliated in invariant manifolds. Consequently, they display an initial condition dependent dynamics, extreme multistability (coexistence of infinitely many attractors) and bifurcations without parameters. Recently, a new discretization scheme has been introduced for CT memristor circuits, guaranteeing that the first integrals are preserved exactly in the discretization. On this basis, FCAM has been extended to discrete-time (DT) memristor circuits showing that they also are characterized by invariant manifolds and they display extreme multistability and bifurcations without parameters. This manuscript considers the maps obtained via DT-FCAM for a circuit with a flux-controlled memristor and a capacitor and it provides a thorough and rigorous investigation of the presence of chaotic dynamics. In particular, parameter ranges are obtained where the maps have snap-back repellers at some fixed points, thus implying that they display chaos in the Marotto and also in the Li–Yorke sense. Bifurcation diagrams are provided where it is possible to analytically identify relevant points in correspondence with the appearance of snap-back repellers and the onset of chaos. The dependence of the bifurcation diagrams and snap-back repellers upon the circuit initial conditions and the related manifold is also studied.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-024-09745-y</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2024-08, Vol.112 (15), p.13519-13537
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_3075478915
source SpringerLink Journals - AutoHoldings
subjects Automotive Engineering
Bifurcations
Circuits
Classical Mechanics
Control
Discretization
Dynamical Systems
Engineering
Initial conditions
Integrals
Invariants
Manifolds
Mechanical Engineering
Memristors
Parameters
Vibration
title Snap-back repellers and chaos in a class of discrete-time memristor circuits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A12%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Snap-back%20repellers%20and%20chaos%20in%20a%20class%20of%20discrete-time%20memristor%20circuits&rft.jtitle=Nonlinear%20dynamics&rft.au=Di%20Marco,%20Mauro&rft.date=2024-08-01&rft.volume=112&rft.issue=15&rft.spage=13519&rft.epage=13537&rft.pages=13519-13537&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-024-09745-y&rft_dat=%3Cproquest_cross%3E3075478915%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3075478915&rft_id=info:pmid/&rfr_iscdi=true