On the integrability, multi-shocks, high-order kinky-breathers, L-lump–kink solutions for the non-autonomous perturbed potential Kadomtsev–Petviashvili equation
This article demonstrates the integrability of the ( 3 + 1 ) -dimensional non-autonomous perturbed potential Kadomtsev–Petviashvili (NpPKP) equation through lax pairs and Bäcklund transformation. Hirota’s bilinear form is used to build the multi-shock solutions, and the multi-kinky-breather solution...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2024-08, Vol.112 (15), p.13335-13359 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13359 |
---|---|
container_issue | 15 |
container_start_page | 13335 |
container_title | Nonlinear dynamics |
container_volume | 112 |
creator | Alhejaili, Weaam Roy, Subrata Raut, Santanu Roy, Ashim Salas, Alvaro H. Aboelenen, Tarek El-Tantawy, S. A. |
description | This article demonstrates the integrability of the
(
3
+
1
)
-dimensional non-autonomous perturbed potential Kadomtsev–Petviashvili (NpPKP) equation through lax pairs and Bäcklund transformation. Hirota’s bilinear form is used to build the multi-shock solutions, and the multi-kinky-breather solutions are studied analytically by looking at the vector choices in the solution space. The first-order kinky-breather and the first-order lump solutions are investigated in a two-shock solution. The three-shock seed solution is used to explain how the one-order kinky-breather solution and the one-shock solution interact. Analytical analysis determines how the multi-shock solution interacts with the periodic and hyperbolic shocks, breathers, and lump solutions. Various non-autonomous hybrid solutions, such as shock lump–kink and shock kinky-breather, and their interactions are also shown. An illustration of the obtained solutions is shown using specific parameter values. These proposed solutions are expected to provide a comprehensive explanation for the inherent ambiguity surrounding certain enigmatic nonlinear events observed in the broader domain of fluid dynamics, with a specific emphasis on the specialized subject of plasma physics. |
doi_str_mv | 10.1007/s11071-024-09707-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3075467113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3075467113</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-d04c39559a66035594dfd79179529807a6a101b3708c3bc4db5af64a1ccb68383</originalsourceid><addsrcrecordid>eNp9kc1q3DAUhUVpoNMkL5CVoNuovbJsy16WkD8ykCwSyE7ItjxWxpYc_QzMLu-QV-iT5UmimSl019VZnHO-e-EgdEbhJwXgvzylwCmBLCdQc-Ak_4IWtOCMZGX9_BUtoN5b8PwNfff-BQBYBtUC_bk3OAwKaxPUyslGjzpsz_EUx6CJH2y79ud40KuBWNcph9farLekcUqmlkvekoxxmj_e3ncO9naMQVvjcW_dHmysITIGa-xko8ezciG6RnV4tkGZoOWI72Rnp-DVJlEeVNho6YdNegSr1yh3tBN01MvRq9O_eoyeri4fL27I8v769uL3krQZQCAd5C2ri6KWZQksad71Ha8pr4usroDLUlKgDeNQtaxp864pZF_mkrZtU1asYsfox4E7O_salQ_ixUZn0knBgBd5ySllKZUdUq2z3jvVi9npSbqtoCB2a4jDGiKtIfZriDyV2KHkU9islPuH_k_rE1PbkxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075467113</pqid></control><display><type>article</type><title>On the integrability, multi-shocks, high-order kinky-breathers, L-lump–kink solutions for the non-autonomous perturbed potential Kadomtsev–Petviashvili equation</title><source>SpringerNature Journals</source><creator>Alhejaili, Weaam ; Roy, Subrata ; Raut, Santanu ; Roy, Ashim ; Salas, Alvaro H. ; Aboelenen, Tarek ; El-Tantawy, S. A.</creator><creatorcontrib>Alhejaili, Weaam ; Roy, Subrata ; Raut, Santanu ; Roy, Ashim ; Salas, Alvaro H. ; Aboelenen, Tarek ; El-Tantawy, S. A.</creatorcontrib><description>This article demonstrates the integrability of the
(
3
+
1
)
-dimensional non-autonomous perturbed potential Kadomtsev–Petviashvili (NpPKP) equation through lax pairs and Bäcklund transformation. Hirota’s bilinear form is used to build the multi-shock solutions, and the multi-kinky-breather solutions are studied analytically by looking at the vector choices in the solution space. The first-order kinky-breather and the first-order lump solutions are investigated in a two-shock solution. The three-shock seed solution is used to explain how the one-order kinky-breather solution and the one-shock solution interact. Analytical analysis determines how the multi-shock solution interacts with the periodic and hyperbolic shocks, breathers, and lump solutions. Various non-autonomous hybrid solutions, such as shock lump–kink and shock kinky-breather, and their interactions are also shown. An illustration of the obtained solutions is shown using specific parameter values. These proposed solutions are expected to provide a comprehensive explanation for the inherent ambiguity surrounding certain enigmatic nonlinear events observed in the broader domain of fluid dynamics, with a specific emphasis on the specialized subject of plasma physics.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-024-09707-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Classical Mechanics ; Control ; Dynamical Systems ; Engineering ; Fluid dynamics ; Lie groups ; Mathematics ; Mechanical Engineering ; Physics ; Plasma physics ; Solution space ; Topography ; Vibration</subject><ispartof>Nonlinear dynamics, 2024-08, Vol.112 (15), p.13335-13359</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-d04c39559a66035594dfd79179529807a6a101b3708c3bc4db5af64a1ccb68383</cites><orcidid>0000-0002-6724-7361</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-024-09707-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-024-09707-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Alhejaili, Weaam</creatorcontrib><creatorcontrib>Roy, Subrata</creatorcontrib><creatorcontrib>Raut, Santanu</creatorcontrib><creatorcontrib>Roy, Ashim</creatorcontrib><creatorcontrib>Salas, Alvaro H.</creatorcontrib><creatorcontrib>Aboelenen, Tarek</creatorcontrib><creatorcontrib>El-Tantawy, S. A.</creatorcontrib><title>On the integrability, multi-shocks, high-order kinky-breathers, L-lump–kink solutions for the non-autonomous perturbed potential Kadomtsev–Petviashvili equation</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>This article demonstrates the integrability of the
(
3
+
1
)
-dimensional non-autonomous perturbed potential Kadomtsev–Petviashvili (NpPKP) equation through lax pairs and Bäcklund transformation. Hirota’s bilinear form is used to build the multi-shock solutions, and the multi-kinky-breather solutions are studied analytically by looking at the vector choices in the solution space. The first-order kinky-breather and the first-order lump solutions are investigated in a two-shock solution. The three-shock seed solution is used to explain how the one-order kinky-breather solution and the one-shock solution interact. Analytical analysis determines how the multi-shock solution interacts with the periodic and hyperbolic shocks, breathers, and lump solutions. Various non-autonomous hybrid solutions, such as shock lump–kink and shock kinky-breather, and their interactions are also shown. An illustration of the obtained solutions is shown using specific parameter values. These proposed solutions are expected to provide a comprehensive explanation for the inherent ambiguity surrounding certain enigmatic nonlinear events observed in the broader domain of fluid dynamics, with a specific emphasis on the specialized subject of plasma physics.</description><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Fluid dynamics</subject><subject>Lie groups</subject><subject>Mathematics</subject><subject>Mechanical Engineering</subject><subject>Physics</subject><subject>Plasma physics</subject><subject>Solution space</subject><subject>Topography</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kc1q3DAUhUVpoNMkL5CVoNuovbJsy16WkD8ykCwSyE7ItjxWxpYc_QzMLu-QV-iT5UmimSl019VZnHO-e-EgdEbhJwXgvzylwCmBLCdQc-Ak_4IWtOCMZGX9_BUtoN5b8PwNfff-BQBYBtUC_bk3OAwKaxPUyslGjzpsz_EUx6CJH2y79ud40KuBWNcph9farLekcUqmlkvekoxxmj_e3ncO9naMQVvjcW_dHmysITIGa-xko8ezciG6RnV4tkGZoOWI72Rnp-DVJlEeVNho6YdNegSr1yh3tBN01MvRq9O_eoyeri4fL27I8v769uL3krQZQCAd5C2ri6KWZQksad71Ha8pr4usroDLUlKgDeNQtaxp864pZF_mkrZtU1asYsfox4E7O_salQ_ixUZn0knBgBd5ySllKZUdUq2z3jvVi9npSbqtoCB2a4jDGiKtIfZriDyV2KHkU9islPuH_k_rE1PbkxA</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Alhejaili, Weaam</creator><creator>Roy, Subrata</creator><creator>Raut, Santanu</creator><creator>Roy, Ashim</creator><creator>Salas, Alvaro H.</creator><creator>Aboelenen, Tarek</creator><creator>El-Tantawy, S. A.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6724-7361</orcidid></search><sort><creationdate>20240801</creationdate><title>On the integrability, multi-shocks, high-order kinky-breathers, L-lump–kink solutions for the non-autonomous perturbed potential Kadomtsev–Petviashvili equation</title><author>Alhejaili, Weaam ; Roy, Subrata ; Raut, Santanu ; Roy, Ashim ; Salas, Alvaro H. ; Aboelenen, Tarek ; El-Tantawy, S. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-d04c39559a66035594dfd79179529807a6a101b3708c3bc4db5af64a1ccb68383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Fluid dynamics</topic><topic>Lie groups</topic><topic>Mathematics</topic><topic>Mechanical Engineering</topic><topic>Physics</topic><topic>Plasma physics</topic><topic>Solution space</topic><topic>Topography</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alhejaili, Weaam</creatorcontrib><creatorcontrib>Roy, Subrata</creatorcontrib><creatorcontrib>Raut, Santanu</creatorcontrib><creatorcontrib>Roy, Ashim</creatorcontrib><creatorcontrib>Salas, Alvaro H.</creatorcontrib><creatorcontrib>Aboelenen, Tarek</creatorcontrib><creatorcontrib>El-Tantawy, S. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alhejaili, Weaam</au><au>Roy, Subrata</au><au>Raut, Santanu</au><au>Roy, Ashim</au><au>Salas, Alvaro H.</au><au>Aboelenen, Tarek</au><au>El-Tantawy, S. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the integrability, multi-shocks, high-order kinky-breathers, L-lump–kink solutions for the non-autonomous perturbed potential Kadomtsev–Petviashvili equation</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>112</volume><issue>15</issue><spage>13335</spage><epage>13359</epage><pages>13335-13359</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>This article demonstrates the integrability of the
(
3
+
1
)
-dimensional non-autonomous perturbed potential Kadomtsev–Petviashvili (NpPKP) equation through lax pairs and Bäcklund transformation. Hirota’s bilinear form is used to build the multi-shock solutions, and the multi-kinky-breather solutions are studied analytically by looking at the vector choices in the solution space. The first-order kinky-breather and the first-order lump solutions are investigated in a two-shock solution. The three-shock seed solution is used to explain how the one-order kinky-breather solution and the one-shock solution interact. Analytical analysis determines how the multi-shock solution interacts with the periodic and hyperbolic shocks, breathers, and lump solutions. Various non-autonomous hybrid solutions, such as shock lump–kink and shock kinky-breather, and their interactions are also shown. An illustration of the obtained solutions is shown using specific parameter values. These proposed solutions are expected to provide a comprehensive explanation for the inherent ambiguity surrounding certain enigmatic nonlinear events observed in the broader domain of fluid dynamics, with a specific emphasis on the specialized subject of plasma physics.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-024-09707-4</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-6724-7361</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2024-08, Vol.112 (15), p.13335-13359 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_3075467113 |
source | SpringerNature Journals |
subjects | Automotive Engineering Classical Mechanics Control Dynamical Systems Engineering Fluid dynamics Lie groups Mathematics Mechanical Engineering Physics Plasma physics Solution space Topography Vibration |
title | On the integrability, multi-shocks, high-order kinky-breathers, L-lump–kink solutions for the non-autonomous perturbed potential Kadomtsev–Petviashvili equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T06%3A21%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20integrability,%20multi-shocks,%20high-order%20kinky-breathers,%20L-lump%E2%80%93kink%20solutions%20for%20the%20non-autonomous%20perturbed%20potential%20Kadomtsev%E2%80%93Petviashvili%20equation&rft.jtitle=Nonlinear%20dynamics&rft.au=Alhejaili,%20Weaam&rft.date=2024-08-01&rft.volume=112&rft.issue=15&rft.spage=13335&rft.epage=13359&rft.pages=13335-13359&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-024-09707-4&rft_dat=%3Cproquest_cross%3E3075467113%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3075467113&rft_id=info:pmid/&rfr_iscdi=true |