On the integrability, multi-shocks, high-order kinky-breathers, L-lump–kink solutions for the non-autonomous perturbed potential Kadomtsev–Petviashvili equation

This article demonstrates the integrability of the ( 3 + 1 ) -dimensional non-autonomous perturbed potential Kadomtsev–Petviashvili (NpPKP) equation through lax pairs and Bäcklund transformation. Hirota’s bilinear form is used to build the multi-shock solutions, and the multi-kinky-breather solution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2024-08, Vol.112 (15), p.13335-13359
Hauptverfasser: Alhejaili, Weaam, Roy, Subrata, Raut, Santanu, Roy, Ashim, Salas, Alvaro H., Aboelenen, Tarek, El-Tantawy, S. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13359
container_issue 15
container_start_page 13335
container_title Nonlinear dynamics
container_volume 112
creator Alhejaili, Weaam
Roy, Subrata
Raut, Santanu
Roy, Ashim
Salas, Alvaro H.
Aboelenen, Tarek
El-Tantawy, S. A.
description This article demonstrates the integrability of the ( 3 + 1 ) -dimensional non-autonomous perturbed potential Kadomtsev–Petviashvili (NpPKP) equation through lax pairs and Bäcklund transformation. Hirota’s bilinear form is used to build the multi-shock solutions, and the multi-kinky-breather solutions are studied analytically by looking at the vector choices in the solution space. The first-order kinky-breather and the first-order lump solutions are investigated in a two-shock solution. The three-shock seed solution is used to explain how the one-order kinky-breather solution and the one-shock solution interact. Analytical analysis determines how the multi-shock solution interacts with the periodic and hyperbolic shocks, breathers, and lump solutions. Various non-autonomous hybrid solutions, such as shock lump–kink and shock kinky-breather, and their interactions are also shown. An illustration of the obtained solutions is shown using specific parameter values. These proposed solutions are expected to provide a comprehensive explanation for the inherent ambiguity surrounding certain enigmatic nonlinear events observed in the broader domain of fluid dynamics, with a specific emphasis on the specialized subject of plasma physics.
doi_str_mv 10.1007/s11071-024-09707-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3075467113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3075467113</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-d04c39559a66035594dfd79179529807a6a101b3708c3bc4db5af64a1ccb68383</originalsourceid><addsrcrecordid>eNp9kc1q3DAUhUVpoNMkL5CVoNuovbJsy16WkD8ykCwSyE7ItjxWxpYc_QzMLu-QV-iT5UmimSl019VZnHO-e-EgdEbhJwXgvzylwCmBLCdQc-Ak_4IWtOCMZGX9_BUtoN5b8PwNfff-BQBYBtUC_bk3OAwKaxPUyslGjzpsz_EUx6CJH2y79ud40KuBWNcph9farLekcUqmlkvekoxxmj_e3ncO9naMQVvjcW_dHmysITIGa-xko8ezciG6RnV4tkGZoOWI72Rnp-DVJlEeVNho6YdNegSr1yh3tBN01MvRq9O_eoyeri4fL27I8v769uL3krQZQCAd5C2ri6KWZQksad71Ha8pr4usroDLUlKgDeNQtaxp864pZF_mkrZtU1asYsfox4E7O_salQ_ixUZn0knBgBd5ySllKZUdUq2z3jvVi9npSbqtoCB2a4jDGiKtIfZriDyV2KHkU9islPuH_k_rE1PbkxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075467113</pqid></control><display><type>article</type><title>On the integrability, multi-shocks, high-order kinky-breathers, L-lump–kink solutions for the non-autonomous perturbed potential Kadomtsev–Petviashvili equation</title><source>SpringerNature Journals</source><creator>Alhejaili, Weaam ; Roy, Subrata ; Raut, Santanu ; Roy, Ashim ; Salas, Alvaro H. ; Aboelenen, Tarek ; El-Tantawy, S. A.</creator><creatorcontrib>Alhejaili, Weaam ; Roy, Subrata ; Raut, Santanu ; Roy, Ashim ; Salas, Alvaro H. ; Aboelenen, Tarek ; El-Tantawy, S. A.</creatorcontrib><description>This article demonstrates the integrability of the ( 3 + 1 ) -dimensional non-autonomous perturbed potential Kadomtsev–Petviashvili (NpPKP) equation through lax pairs and Bäcklund transformation. Hirota’s bilinear form is used to build the multi-shock solutions, and the multi-kinky-breather solutions are studied analytically by looking at the vector choices in the solution space. The first-order kinky-breather and the first-order lump solutions are investigated in a two-shock solution. The three-shock seed solution is used to explain how the one-order kinky-breather solution and the one-shock solution interact. Analytical analysis determines how the multi-shock solution interacts with the periodic and hyperbolic shocks, breathers, and lump solutions. Various non-autonomous hybrid solutions, such as shock lump–kink and shock kinky-breather, and their interactions are also shown. An illustration of the obtained solutions is shown using specific parameter values. These proposed solutions are expected to provide a comprehensive explanation for the inherent ambiguity surrounding certain enigmatic nonlinear events observed in the broader domain of fluid dynamics, with a specific emphasis on the specialized subject of plasma physics.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-024-09707-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Classical Mechanics ; Control ; Dynamical Systems ; Engineering ; Fluid dynamics ; Lie groups ; Mathematics ; Mechanical Engineering ; Physics ; Plasma physics ; Solution space ; Topography ; Vibration</subject><ispartof>Nonlinear dynamics, 2024-08, Vol.112 (15), p.13335-13359</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-d04c39559a66035594dfd79179529807a6a101b3708c3bc4db5af64a1ccb68383</cites><orcidid>0000-0002-6724-7361</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-024-09707-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-024-09707-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Alhejaili, Weaam</creatorcontrib><creatorcontrib>Roy, Subrata</creatorcontrib><creatorcontrib>Raut, Santanu</creatorcontrib><creatorcontrib>Roy, Ashim</creatorcontrib><creatorcontrib>Salas, Alvaro H.</creatorcontrib><creatorcontrib>Aboelenen, Tarek</creatorcontrib><creatorcontrib>El-Tantawy, S. A.</creatorcontrib><title>On the integrability, multi-shocks, high-order kinky-breathers, L-lump–kink solutions for the non-autonomous perturbed potential Kadomtsev–Petviashvili equation</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>This article demonstrates the integrability of the ( 3 + 1 ) -dimensional non-autonomous perturbed potential Kadomtsev–Petviashvili (NpPKP) equation through lax pairs and Bäcklund transformation. Hirota’s bilinear form is used to build the multi-shock solutions, and the multi-kinky-breather solutions are studied analytically by looking at the vector choices in the solution space. The first-order kinky-breather and the first-order lump solutions are investigated in a two-shock solution. The three-shock seed solution is used to explain how the one-order kinky-breather solution and the one-shock solution interact. Analytical analysis determines how the multi-shock solution interacts with the periodic and hyperbolic shocks, breathers, and lump solutions. Various non-autonomous hybrid solutions, such as shock lump–kink and shock kinky-breather, and their interactions are also shown. An illustration of the obtained solutions is shown using specific parameter values. These proposed solutions are expected to provide a comprehensive explanation for the inherent ambiguity surrounding certain enigmatic nonlinear events observed in the broader domain of fluid dynamics, with a specific emphasis on the specialized subject of plasma physics.</description><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Fluid dynamics</subject><subject>Lie groups</subject><subject>Mathematics</subject><subject>Mechanical Engineering</subject><subject>Physics</subject><subject>Plasma physics</subject><subject>Solution space</subject><subject>Topography</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kc1q3DAUhUVpoNMkL5CVoNuovbJsy16WkD8ykCwSyE7ItjxWxpYc_QzMLu-QV-iT5UmimSl019VZnHO-e-EgdEbhJwXgvzylwCmBLCdQc-Ak_4IWtOCMZGX9_BUtoN5b8PwNfff-BQBYBtUC_bk3OAwKaxPUyslGjzpsz_EUx6CJH2y79ud40KuBWNcph9farLekcUqmlkvekoxxmj_e3ncO9naMQVvjcW_dHmysITIGa-xko8ezciG6RnV4tkGZoOWI72Rnp-DVJlEeVNho6YdNegSr1yh3tBN01MvRq9O_eoyeri4fL27I8v769uL3krQZQCAd5C2ri6KWZQksad71Ha8pr4usroDLUlKgDeNQtaxp864pZF_mkrZtU1asYsfox4E7O_salQ_ixUZn0knBgBd5ySllKZUdUq2z3jvVi9npSbqtoCB2a4jDGiKtIfZriDyV2KHkU9islPuH_k_rE1PbkxA</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Alhejaili, Weaam</creator><creator>Roy, Subrata</creator><creator>Raut, Santanu</creator><creator>Roy, Ashim</creator><creator>Salas, Alvaro H.</creator><creator>Aboelenen, Tarek</creator><creator>El-Tantawy, S. A.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6724-7361</orcidid></search><sort><creationdate>20240801</creationdate><title>On the integrability, multi-shocks, high-order kinky-breathers, L-lump–kink solutions for the non-autonomous perturbed potential Kadomtsev–Petviashvili equation</title><author>Alhejaili, Weaam ; Roy, Subrata ; Raut, Santanu ; Roy, Ashim ; Salas, Alvaro H. ; Aboelenen, Tarek ; El-Tantawy, S. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-d04c39559a66035594dfd79179529807a6a101b3708c3bc4db5af64a1ccb68383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Fluid dynamics</topic><topic>Lie groups</topic><topic>Mathematics</topic><topic>Mechanical Engineering</topic><topic>Physics</topic><topic>Plasma physics</topic><topic>Solution space</topic><topic>Topography</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alhejaili, Weaam</creatorcontrib><creatorcontrib>Roy, Subrata</creatorcontrib><creatorcontrib>Raut, Santanu</creatorcontrib><creatorcontrib>Roy, Ashim</creatorcontrib><creatorcontrib>Salas, Alvaro H.</creatorcontrib><creatorcontrib>Aboelenen, Tarek</creatorcontrib><creatorcontrib>El-Tantawy, S. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alhejaili, Weaam</au><au>Roy, Subrata</au><au>Raut, Santanu</au><au>Roy, Ashim</au><au>Salas, Alvaro H.</au><au>Aboelenen, Tarek</au><au>El-Tantawy, S. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the integrability, multi-shocks, high-order kinky-breathers, L-lump–kink solutions for the non-autonomous perturbed potential Kadomtsev–Petviashvili equation</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>112</volume><issue>15</issue><spage>13335</spage><epage>13359</epage><pages>13335-13359</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>This article demonstrates the integrability of the ( 3 + 1 ) -dimensional non-autonomous perturbed potential Kadomtsev–Petviashvili (NpPKP) equation through lax pairs and Bäcklund transformation. Hirota’s bilinear form is used to build the multi-shock solutions, and the multi-kinky-breather solutions are studied analytically by looking at the vector choices in the solution space. The first-order kinky-breather and the first-order lump solutions are investigated in a two-shock solution. The three-shock seed solution is used to explain how the one-order kinky-breather solution and the one-shock solution interact. Analytical analysis determines how the multi-shock solution interacts with the periodic and hyperbolic shocks, breathers, and lump solutions. Various non-autonomous hybrid solutions, such as shock lump–kink and shock kinky-breather, and their interactions are also shown. An illustration of the obtained solutions is shown using specific parameter values. These proposed solutions are expected to provide a comprehensive explanation for the inherent ambiguity surrounding certain enigmatic nonlinear events observed in the broader domain of fluid dynamics, with a specific emphasis on the specialized subject of plasma physics.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-024-09707-4</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-6724-7361</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2024-08, Vol.112 (15), p.13335-13359
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_3075467113
source SpringerNature Journals
subjects Automotive Engineering
Classical Mechanics
Control
Dynamical Systems
Engineering
Fluid dynamics
Lie groups
Mathematics
Mechanical Engineering
Physics
Plasma physics
Solution space
Topography
Vibration
title On the integrability, multi-shocks, high-order kinky-breathers, L-lump–kink solutions for the non-autonomous perturbed potential Kadomtsev–Petviashvili equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T06%3A21%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20integrability,%20multi-shocks,%20high-order%20kinky-breathers,%20L-lump%E2%80%93kink%20solutions%20for%20the%20non-autonomous%20perturbed%20potential%20Kadomtsev%E2%80%93Petviashvili%20equation&rft.jtitle=Nonlinear%20dynamics&rft.au=Alhejaili,%20Weaam&rft.date=2024-08-01&rft.volume=112&rft.issue=15&rft.spage=13335&rft.epage=13359&rft.pages=13335-13359&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-024-09707-4&rft_dat=%3Cproquest_cross%3E3075467113%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3075467113&rft_id=info:pmid/&rfr_iscdi=true