ColPali: Efficient Document Retrieval with Vision Language Models

Documents are visually rich structures that convey information through text, as well as tables, figures, page layouts, or fonts. While modern document retrieval systems exhibit strong performance on query-to-text matching, they struggle to exploit visual cues efficiently, hindering their performance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-07
Hauptverfasser: Faysse, Manuel, Sibille, Hugues, Wu, Tony, Omrani, Bilel, Gautier Viaud, Hudelot, Céline, Colombo, Pierre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Faysse, Manuel
Sibille, Hugues
Wu, Tony
Omrani, Bilel
Gautier Viaud
Hudelot, Céline
Colombo, Pierre
description Documents are visually rich structures that convey information through text, as well as tables, figures, page layouts, or fonts. While modern document retrieval systems exhibit strong performance on query-to-text matching, they struggle to exploit visual cues efficiently, hindering their performance on practical document retrieval applications such as Retrieval Augmented Generation. To benchmark current systems on visually rich document retrieval, we introduce the Visual Document Retrieval Benchmark ViDoRe, composed of various page-level retrieving tasks spanning multiple domains, languages, and settings. The inherent shortcomings of modern systems motivate the introduction of a new retrieval model architecture, ColPali, which leverages the document understanding capabilities of recent Vision Language Models to produce high-quality contextualized embeddings solely from images of document pages. Combined with a late interaction matching mechanism, ColPali largely outperforms modern document retrieval pipelines while being drastically faster and end-to-end trainable.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3075439733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3075439733</sourcerecordid><originalsourceid>FETCH-proquest_journals_30754397333</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwdM7PCUjMybRScE1Ly0zOTM0rUXDJTy7NBTGCUkuKMlPLEnMUyjNLMhTCMosz8_MUfBLz0ksT01MVfPNTUnOKeRhY0xJzilN5oTQ3g7Kba4izh25BUX5haWpxSXxWfmlRHlAq3tjA3NTE2NLc2NiYOFUAQ9M5Eg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075439733</pqid></control><display><type>article</type><title>ColPali: Efficient Document Retrieval with Vision Language Models</title><source>Freely Accessible Journals</source><creator>Faysse, Manuel ; Sibille, Hugues ; Wu, Tony ; Omrani, Bilel ; Gautier Viaud ; Hudelot, Céline ; Colombo, Pierre</creator><creatorcontrib>Faysse, Manuel ; Sibille, Hugues ; Wu, Tony ; Omrani, Bilel ; Gautier Viaud ; Hudelot, Céline ; Colombo, Pierre</creatorcontrib><description>Documents are visually rich structures that convey information through text, as well as tables, figures, page layouts, or fonts. While modern document retrieval systems exhibit strong performance on query-to-text matching, they struggle to exploit visual cues efficiently, hindering their performance on practical document retrieval applications such as Retrieval Augmented Generation. To benchmark current systems on visually rich document retrieval, we introduce the Visual Document Retrieval Benchmark ViDoRe, composed of various page-level retrieving tasks spanning multiple domains, languages, and settings. The inherent shortcomings of modern systems motivate the introduction of a new retrieval model architecture, ColPali, which leverages the document understanding capabilities of recent Vision Language Models to produce high-quality contextualized embeddings solely from images of document pages. Combined with a late interaction matching mechanism, ColPali largely outperforms modern document retrieval pipelines while being drastically faster and end-to-end trainable.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Benchmarks ; Documents ; Image quality ; Matching ; Page layout ; Retrieval ; Vision</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Faysse, Manuel</creatorcontrib><creatorcontrib>Sibille, Hugues</creatorcontrib><creatorcontrib>Wu, Tony</creatorcontrib><creatorcontrib>Omrani, Bilel</creatorcontrib><creatorcontrib>Gautier Viaud</creatorcontrib><creatorcontrib>Hudelot, Céline</creatorcontrib><creatorcontrib>Colombo, Pierre</creatorcontrib><title>ColPali: Efficient Document Retrieval with Vision Language Models</title><title>arXiv.org</title><description>Documents are visually rich structures that convey information through text, as well as tables, figures, page layouts, or fonts. While modern document retrieval systems exhibit strong performance on query-to-text matching, they struggle to exploit visual cues efficiently, hindering their performance on practical document retrieval applications such as Retrieval Augmented Generation. To benchmark current systems on visually rich document retrieval, we introduce the Visual Document Retrieval Benchmark ViDoRe, composed of various page-level retrieving tasks spanning multiple domains, languages, and settings. The inherent shortcomings of modern systems motivate the introduction of a new retrieval model architecture, ColPali, which leverages the document understanding capabilities of recent Vision Language Models to produce high-quality contextualized embeddings solely from images of document pages. Combined with a late interaction matching mechanism, ColPali largely outperforms modern document retrieval pipelines while being drastically faster and end-to-end trainable.</description><subject>Benchmarks</subject><subject>Documents</subject><subject>Image quality</subject><subject>Matching</subject><subject>Page layout</subject><subject>Retrieval</subject><subject>Vision</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwdM7PCUjMybRScE1Ly0zOTM0rUXDJTy7NBTGCUkuKMlPLEnMUyjNLMhTCMosz8_MUfBLz0ksT01MVfPNTUnOKeRhY0xJzilN5oTQ3g7Kba4izh25BUX5haWpxSXxWfmlRHlAq3tjA3NTE2NLc2NiYOFUAQ9M5Eg</recordid><startdate>20240702</startdate><enddate>20240702</enddate><creator>Faysse, Manuel</creator><creator>Sibille, Hugues</creator><creator>Wu, Tony</creator><creator>Omrani, Bilel</creator><creator>Gautier Viaud</creator><creator>Hudelot, Céline</creator><creator>Colombo, Pierre</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240702</creationdate><title>ColPali: Efficient Document Retrieval with Vision Language Models</title><author>Faysse, Manuel ; Sibille, Hugues ; Wu, Tony ; Omrani, Bilel ; Gautier Viaud ; Hudelot, Céline ; Colombo, Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30754397333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Benchmarks</topic><topic>Documents</topic><topic>Image quality</topic><topic>Matching</topic><topic>Page layout</topic><topic>Retrieval</topic><topic>Vision</topic><toplevel>online_resources</toplevel><creatorcontrib>Faysse, Manuel</creatorcontrib><creatorcontrib>Sibille, Hugues</creatorcontrib><creatorcontrib>Wu, Tony</creatorcontrib><creatorcontrib>Omrani, Bilel</creatorcontrib><creatorcontrib>Gautier Viaud</creatorcontrib><creatorcontrib>Hudelot, Céline</creatorcontrib><creatorcontrib>Colombo, Pierre</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Faysse, Manuel</au><au>Sibille, Hugues</au><au>Wu, Tony</au><au>Omrani, Bilel</au><au>Gautier Viaud</au><au>Hudelot, Céline</au><au>Colombo, Pierre</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>ColPali: Efficient Document Retrieval with Vision Language Models</atitle><jtitle>arXiv.org</jtitle><date>2024-07-02</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Documents are visually rich structures that convey information through text, as well as tables, figures, page layouts, or fonts. While modern document retrieval systems exhibit strong performance on query-to-text matching, they struggle to exploit visual cues efficiently, hindering their performance on practical document retrieval applications such as Retrieval Augmented Generation. To benchmark current systems on visually rich document retrieval, we introduce the Visual Document Retrieval Benchmark ViDoRe, composed of various page-level retrieving tasks spanning multiple domains, languages, and settings. The inherent shortcomings of modern systems motivate the introduction of a new retrieval model architecture, ColPali, which leverages the document understanding capabilities of recent Vision Language Models to produce high-quality contextualized embeddings solely from images of document pages. Combined with a late interaction matching mechanism, ColPali largely outperforms modern document retrieval pipelines while being drastically faster and end-to-end trainable.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_3075439733
source Freely Accessible Journals
subjects Benchmarks
Documents
Image quality
Matching
Page layout
Retrieval
Vision
title ColPali: Efficient Document Retrieval with Vision Language Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A03%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=ColPali:%20Efficient%20Document%20Retrieval%20with%20Vision%20Language%20Models&rft.jtitle=arXiv.org&rft.au=Faysse,%20Manuel&rft.date=2024-07-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3075439733%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3075439733&rft_id=info:pmid/&rfr_iscdi=true