A Hybrid Long Short-Term Memory and Kalman Filter Model for Train Trajectory Prediction

Trajectory prediction of the train ahead is vital for deciding the minimum safe distance for train separation. An important research challenge, in this regard, is how to effectively and accurately estimate the trajectory of the train ahead using spatiotemporal approaches with train operating data. I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2024-07, Vol.25 (7), p.7125-7139
Hauptverfasser: Ahmad, Ehsan, He, Yijuan, Luo, Zhengwei, Lv, Jidong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7139
container_issue 7
container_start_page 7125
container_title IEEE transactions on intelligent transportation systems
container_volume 25
creator Ahmad, Ehsan
He, Yijuan
Luo, Zhengwei
Lv, Jidong
description Trajectory prediction of the train ahead is vital for deciding the minimum safe distance for train separation. An important research challenge, in this regard, is how to effectively and accurately estimate the trajectory of the train ahead using spatiotemporal approaches with train operating data. In this paper, we present a novel hybrid model for predicting train trajectories by integrating Long Short-Term Memory (LSTM) and Kalman Filter (KF). In the proposed hybrid LSTM-KF model, the LSTM model is used to analyze time series data and discover the long-term dependencies of train trajectory data, which can be assumed as observation data for the KF model. The KF model can combine train dynamics mechanism to extract local features of train operation data, so as to smooth the train trajectory predicted by LSTM model. A novel on-the-fly algorithm is devised for efficient realization of the proposed LSTM-KF model. Experiments are carried out using the train data collected from Chengdu Metro Line 8. The results indicate that our hybrid LSTM-KF model has greatly improved the accuracy of long-term train trajectory prediction.
doi_str_mv 10.1109/TITS.2023.3346649
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3075427677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10400983</ieee_id><sourcerecordid>3075427677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-d5298aa2bba4d8571352e022b5c6361983558fb0724cc2941f39f34051432b8e3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFZ_gOBhwXPqfid7LMXaYotCIx6XzWaiW5Js3aSH_nsT6sHLzDA873y8CN1TMqOU6Kd8ne9mjDA-41woJfQFmlAps4QQqi7HmolEE0mu0U3X7YeukJRO0Occr05F9CXehPYL775D7JMcYoO30IR4wrYt8autG9vipa97iHgbSqhxFSLOo_XtGPfg-hF-j1B61_vQ3qKrytYd3P3lKfpYPueLVbJ5e1kv5pvEMaH6pJRMZ9ayorCizGRKuWRAGCukU1xRnfHhh6ogKRPOMS1oxXXFBZFUcFZkwKfo8Tz3EMPPEbre7MMxtsNKw0kqBUtVmg4UPVMuhq6LUJlD9I2NJ0OJGf0zo39m9M_8-TdoHs4aDwD_eEHIcBb_BSdRahU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075427677</pqid></control><display><type>article</type><title>A Hybrid Long Short-Term Memory and Kalman Filter Model for Train Trajectory Prediction</title><source>IEEE Electronic Library (IEL)</source><creator>Ahmad, Ehsan ; He, Yijuan ; Luo, Zhengwei ; Lv, Jidong</creator><creatorcontrib>Ahmad, Ehsan ; He, Yijuan ; Luo, Zhengwei ; Lv, Jidong</creatorcontrib><description>Trajectory prediction of the train ahead is vital for deciding the minimum safe distance for train separation. An important research challenge, in this regard, is how to effectively and accurately estimate the trajectory of the train ahead using spatiotemporal approaches with train operating data. In this paper, we present a novel hybrid model for predicting train trajectories by integrating Long Short-Term Memory (LSTM) and Kalman Filter (KF). In the proposed hybrid LSTM-KF model, the LSTM model is used to analyze time series data and discover the long-term dependencies of train trajectory data, which can be assumed as observation data for the KF model. The KF model can combine train dynamics mechanism to extract local features of train operation data, so as to smooth the train trajectory predicted by LSTM model. A novel on-the-fly algorithm is devised for efficient realization of the proposed LSTM-KF model. Experiments are carried out using the train data collected from Chengdu Metro Line 8. The results indicate that our hybrid LSTM-KF model has greatly improved the accuracy of long-term train trajectory prediction.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2023.3346649</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Data mining ; Data models ; Feature extraction ; Hidden Markov models ; Kalman filter ; Kalman filters ; long short-term memory ; Predictive models ; Rail transportation ; train separation ; Trajectory ; Trajectory analysis ; Trajectory prediction</subject><ispartof>IEEE transactions on intelligent transportation systems, 2024-07, Vol.25 (7), p.7125-7139</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-d5298aa2bba4d8571352e022b5c6361983558fb0724cc2941f39f34051432b8e3</cites><orcidid>0000-0001-8593-2824 ; 0000-0003-2703-0608 ; 0000-0001-8404-6820 ; 0009-0009-8393-221X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10400983$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10400983$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ahmad, Ehsan</creatorcontrib><creatorcontrib>He, Yijuan</creatorcontrib><creatorcontrib>Luo, Zhengwei</creatorcontrib><creatorcontrib>Lv, Jidong</creatorcontrib><title>A Hybrid Long Short-Term Memory and Kalman Filter Model for Train Trajectory Prediction</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Trajectory prediction of the train ahead is vital for deciding the minimum safe distance for train separation. An important research challenge, in this regard, is how to effectively and accurately estimate the trajectory of the train ahead using spatiotemporal approaches with train operating data. In this paper, we present a novel hybrid model for predicting train trajectories by integrating Long Short-Term Memory (LSTM) and Kalman Filter (KF). In the proposed hybrid LSTM-KF model, the LSTM model is used to analyze time series data and discover the long-term dependencies of train trajectory data, which can be assumed as observation data for the KF model. The KF model can combine train dynamics mechanism to extract local features of train operation data, so as to smooth the train trajectory predicted by LSTM model. A novel on-the-fly algorithm is devised for efficient realization of the proposed LSTM-KF model. Experiments are carried out using the train data collected from Chengdu Metro Line 8. The results indicate that our hybrid LSTM-KF model has greatly improved the accuracy of long-term train trajectory prediction.</description><subject>Algorithms</subject><subject>Data mining</subject><subject>Data models</subject><subject>Feature extraction</subject><subject>Hidden Markov models</subject><subject>Kalman filter</subject><subject>Kalman filters</subject><subject>long short-term memory</subject><subject>Predictive models</subject><subject>Rail transportation</subject><subject>train separation</subject><subject>Trajectory</subject><subject>Trajectory analysis</subject><subject>Trajectory prediction</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFZ_gOBhwXPqfid7LMXaYotCIx6XzWaiW5Js3aSH_nsT6sHLzDA873y8CN1TMqOU6Kd8ne9mjDA-41woJfQFmlAps4QQqi7HmolEE0mu0U3X7YeukJRO0Occr05F9CXehPYL775D7JMcYoO30IR4wrYt8autG9vipa97iHgbSqhxFSLOo_XtGPfg-hF-j1B61_vQ3qKrytYd3P3lKfpYPueLVbJ5e1kv5pvEMaH6pJRMZ9ayorCizGRKuWRAGCukU1xRnfHhh6ogKRPOMS1oxXXFBZFUcFZkwKfo8Tz3EMPPEbre7MMxtsNKw0kqBUtVmg4UPVMuhq6LUJlD9I2NJ0OJGf0zo39m9M_8-TdoHs4aDwD_eEHIcBb_BSdRahU</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Ahmad, Ehsan</creator><creator>He, Yijuan</creator><creator>Luo, Zhengwei</creator><creator>Lv, Jidong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8593-2824</orcidid><orcidid>https://orcid.org/0000-0003-2703-0608</orcidid><orcidid>https://orcid.org/0000-0001-8404-6820</orcidid><orcidid>https://orcid.org/0009-0009-8393-221X</orcidid></search><sort><creationdate>20240701</creationdate><title>A Hybrid Long Short-Term Memory and Kalman Filter Model for Train Trajectory Prediction</title><author>Ahmad, Ehsan ; He, Yijuan ; Luo, Zhengwei ; Lv, Jidong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-d5298aa2bba4d8571352e022b5c6361983558fb0724cc2941f39f34051432b8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Data mining</topic><topic>Data models</topic><topic>Feature extraction</topic><topic>Hidden Markov models</topic><topic>Kalman filter</topic><topic>Kalman filters</topic><topic>long short-term memory</topic><topic>Predictive models</topic><topic>Rail transportation</topic><topic>train separation</topic><topic>Trajectory</topic><topic>Trajectory analysis</topic><topic>Trajectory prediction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmad, Ehsan</creatorcontrib><creatorcontrib>He, Yijuan</creatorcontrib><creatorcontrib>Luo, Zhengwei</creatorcontrib><creatorcontrib>Lv, Jidong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ahmad, Ehsan</au><au>He, Yijuan</au><au>Luo, Zhengwei</au><au>Lv, Jidong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hybrid Long Short-Term Memory and Kalman Filter Model for Train Trajectory Prediction</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>25</volume><issue>7</issue><spage>7125</spage><epage>7139</epage><pages>7125-7139</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Trajectory prediction of the train ahead is vital for deciding the minimum safe distance for train separation. An important research challenge, in this regard, is how to effectively and accurately estimate the trajectory of the train ahead using spatiotemporal approaches with train operating data. In this paper, we present a novel hybrid model for predicting train trajectories by integrating Long Short-Term Memory (LSTM) and Kalman Filter (KF). In the proposed hybrid LSTM-KF model, the LSTM model is used to analyze time series data and discover the long-term dependencies of train trajectory data, which can be assumed as observation data for the KF model. The KF model can combine train dynamics mechanism to extract local features of train operation data, so as to smooth the train trajectory predicted by LSTM model. A novel on-the-fly algorithm is devised for efficient realization of the proposed LSTM-KF model. Experiments are carried out using the train data collected from Chengdu Metro Line 8. The results indicate that our hybrid LSTM-KF model has greatly improved the accuracy of long-term train trajectory prediction.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2023.3346649</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8593-2824</orcidid><orcidid>https://orcid.org/0000-0003-2703-0608</orcidid><orcidid>https://orcid.org/0000-0001-8404-6820</orcidid><orcidid>https://orcid.org/0009-0009-8393-221X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2024-07, Vol.25 (7), p.7125-7139
issn 1524-9050
1558-0016
language eng
recordid cdi_proquest_journals_3075427677
source IEEE Electronic Library (IEL)
subjects Algorithms
Data mining
Data models
Feature extraction
Hidden Markov models
Kalman filter
Kalman filters
long short-term memory
Predictive models
Rail transportation
train separation
Trajectory
Trajectory analysis
Trajectory prediction
title A Hybrid Long Short-Term Memory and Kalman Filter Model for Train Trajectory Prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A33%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hybrid%20Long%20Short-Term%20Memory%20and%20Kalman%20Filter%20Model%20for%20Train%20Trajectory%20Prediction&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Ahmad,%20Ehsan&rft.date=2024-07-01&rft.volume=25&rft.issue=7&rft.spage=7125&rft.epage=7139&rft.pages=7125-7139&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2023.3346649&rft_dat=%3Cproquest_RIE%3E3075427677%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3075427677&rft_id=info:pmid/&rft_ieee_id=10400983&rfr_iscdi=true