MSDE-Net: A Multi-Scale Dual-Encoding Network for Surgical Instrument Segmentation
Minimally invasive surgery, which relies on surgical robots and microscopes, demands precise image segmentation to ensure safe and efficient procedures. Nevertheless, achieving accurate segmentation of surgical instruments remains challenging due to the complexity of the surgical environment. To tac...
Gespeichert in:
Veröffentlicht in: | IEEE journal of biomedical and health informatics 2024-07, Vol.28 (7), p.4072-4083 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4083 |
---|---|
container_issue | 7 |
container_start_page | 4072 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 28 |
creator | Yang, Lei Gu, Yuge Bian, Guibin Liu, Yanhong |
description | Minimally invasive surgery, which relies on surgical robots and microscopes, demands precise image segmentation to ensure safe and efficient procedures. Nevertheless, achieving accurate segmentation of surgical instruments remains challenging due to the complexity of the surgical environment. To tackle this issue, this paper introduces a novel multiscale dual-encoding segmentation network, termed MSDE-Net, designed to automatically and precisely segment surgical instruments. The proposed MSDE-Net leverages a dual-branch encoder comprising a convolutional neural network (CNN) branch and a transformer branch to effectively extract both local and global features. Moreover, an attention fusion block (AFB) is introduced to ensure effective information complementarity between the dual-branch encoding paths. Additionally, a multilayer context fusion block (MCF) is proposed to enhance the network's capacity to simultaneously extract global and local features. Finally, to extend the scope of global feature information under larger receptive fields, a multi-receptive field fusion (MRF) block is incorporated. Through comprehensive experimental evaluations on two publicly available datasets for surgical instrument segmentation, the proposed MSDE-Net demonstrates superior performance compared to existing methods. |
doi_str_mv | 10.1109/JBHI.2023.3344716 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3075417963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10366786</ieee_id><sourcerecordid>3075417963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-441d04a03bb92ee194399ffcd49dd761f17a994a254805f55f05cd9a618acd833</originalsourceid><addsrcrecordid>eNpdkF1LwzAUhoMobsz9AEGk4I03nflqmng3t-kmm4LV65C1yejsx0xaxH9vyqaIuTnh8JyXlweAcwRHCEFx83g3X4wwxGRECKUxYkegjxHjIcaQH__8kaA9MHRuC_3jfiXYKegRjlDMkOiDl1UynYVPurkNxsGqLZo8TFJV6GDaqiKcVWmd5dUm8MBnbd8DU9sgae0m90ywqFxj21JXTZDoTTdVk9fVGTgxqnB6eJgD8HY_e53Mw-Xzw2IyXoYpgbgJKUUZpAqS9VpgrX1RIoQxaUZFlvlyBsVKCKpwRDmMTBQZGKWZUAxxlWackAG43ufubP3RatfIMnepLgpV6bp1EgtIo5hAzjx69Q_d1q2tfDtJYBxRFAvWBaI9ldraOauN3Nm8VPZLIig757JzLjvn8uDc31wektt1qbPfix_DHrjYA7nW-k8gYSz2zb4BblyC4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075417963</pqid></control><display><type>article</type><title>MSDE-Net: A Multi-Scale Dual-Encoding Network for Surgical Instrument Segmentation</title><source>IEEE Electronic Library (IEL)</source><creator>Yang, Lei ; Gu, Yuge ; Bian, Guibin ; Liu, Yanhong</creator><creatorcontrib>Yang, Lei ; Gu, Yuge ; Bian, Guibin ; Liu, Yanhong</creatorcontrib><description>Minimally invasive surgery, which relies on surgical robots and microscopes, demands precise image segmentation to ensure safe and efficient procedures. Nevertheless, achieving accurate segmentation of surgical instruments remains challenging due to the complexity of the surgical environment. To tackle this issue, this paper introduces a novel multiscale dual-encoding segmentation network, termed MSDE-Net, designed to automatically and precisely segment surgical instruments. The proposed MSDE-Net leverages a dual-branch encoder comprising a convolutional neural network (CNN) branch and a transformer branch to effectively extract both local and global features. Moreover, an attention fusion block (AFB) is introduced to ensure effective information complementarity between the dual-branch encoding paths. Additionally, a multilayer context fusion block (MCF) is proposed to enhance the network's capacity to simultaneously extract global and local features. Finally, to extend the scope of global feature information under larger receptive fields, a multi-receptive field fusion (MRF) block is incorporated. Through comprehensive experimental evaluations on two publicly available datasets for surgical instrument segmentation, the proposed MSDE-Net demonstrates superior performance compared to existing methods.</description><identifier>ISSN: 2168-2194</identifier><identifier>ISSN: 2168-2208</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2023.3344716</identifier><identifier>PMID: 38117619</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Biomedical imaging ; Coding ; Complementarity ; Decoding ; dual-branch encoder ; Effectiveness ; Feature extraction ; feature fusion ; Humans ; Image processing ; Image Processing, Computer-Assisted - methods ; Image segmentation ; Information processing ; Instruments ; Medical instruments ; Microscopes ; Minimally Invasive Surgical Procedures - instrumentation ; Minimally Invasive Surgical Procedures - methods ; Multilayers ; Neural networks ; Neural Networks, Computer ; Receptive field ; Robotic surgery ; Surgery ; Surgical apparatus & instruments ; Surgical instrument segmentation ; Surgical Instruments ; transformer ; Transformers</subject><ispartof>IEEE journal of biomedical and health informatics, 2024-07, Vol.28 (7), p.4072-4083</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c302t-441d04a03bb92ee194399ffcd49dd761f17a994a254805f55f05cd9a618acd833</cites><orcidid>0000-0003-0282-1171 ; 0000-0003-4708-2245 ; 0000-0003-1212-9445 ; 0000-0002-7349-5871</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10366786$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10366786$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38117619$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Lei</creatorcontrib><creatorcontrib>Gu, Yuge</creatorcontrib><creatorcontrib>Bian, Guibin</creatorcontrib><creatorcontrib>Liu, Yanhong</creatorcontrib><title>MSDE-Net: A Multi-Scale Dual-Encoding Network for Surgical Instrument Segmentation</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>Minimally invasive surgery, which relies on surgical robots and microscopes, demands precise image segmentation to ensure safe and efficient procedures. Nevertheless, achieving accurate segmentation of surgical instruments remains challenging due to the complexity of the surgical environment. To tackle this issue, this paper introduces a novel multiscale dual-encoding segmentation network, termed MSDE-Net, designed to automatically and precisely segment surgical instruments. The proposed MSDE-Net leverages a dual-branch encoder comprising a convolutional neural network (CNN) branch and a transformer branch to effectively extract both local and global features. Moreover, an attention fusion block (AFB) is introduced to ensure effective information complementarity between the dual-branch encoding paths. Additionally, a multilayer context fusion block (MCF) is proposed to enhance the network's capacity to simultaneously extract global and local features. Finally, to extend the scope of global feature information under larger receptive fields, a multi-receptive field fusion (MRF) block is incorporated. Through comprehensive experimental evaluations on two publicly available datasets for surgical instrument segmentation, the proposed MSDE-Net demonstrates superior performance compared to existing methods.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Biomedical imaging</subject><subject>Coding</subject><subject>Complementarity</subject><subject>Decoding</subject><subject>dual-branch encoder</subject><subject>Effectiveness</subject><subject>Feature extraction</subject><subject>feature fusion</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Information processing</subject><subject>Instruments</subject><subject>Medical instruments</subject><subject>Microscopes</subject><subject>Minimally Invasive Surgical Procedures - instrumentation</subject><subject>Minimally Invasive Surgical Procedures - methods</subject><subject>Multilayers</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Receptive field</subject><subject>Robotic surgery</subject><subject>Surgery</subject><subject>Surgical apparatus & instruments</subject><subject>Surgical instrument segmentation</subject><subject>Surgical Instruments</subject><subject>transformer</subject><subject>Transformers</subject><issn>2168-2194</issn><issn>2168-2208</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkF1LwzAUhoMobsz9AEGk4I03nflqmng3t-kmm4LV65C1yejsx0xaxH9vyqaIuTnh8JyXlweAcwRHCEFx83g3X4wwxGRECKUxYkegjxHjIcaQH__8kaA9MHRuC_3jfiXYKegRjlDMkOiDl1UynYVPurkNxsGqLZo8TFJV6GDaqiKcVWmd5dUm8MBnbd8DU9sgae0m90ywqFxj21JXTZDoTTdVk9fVGTgxqnB6eJgD8HY_e53Mw-Xzw2IyXoYpgbgJKUUZpAqS9VpgrX1RIoQxaUZFlvlyBsVKCKpwRDmMTBQZGKWZUAxxlWackAG43ufubP3RatfIMnepLgpV6bp1EgtIo5hAzjx69Q_d1q2tfDtJYBxRFAvWBaI9ldraOauN3Nm8VPZLIig757JzLjvn8uDc31wektt1qbPfix_DHrjYA7nW-k8gYSz2zb4BblyC4g</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Yang, Lei</creator><creator>Gu, Yuge</creator><creator>Bian, Guibin</creator><creator>Liu, Yanhong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0282-1171</orcidid><orcidid>https://orcid.org/0000-0003-4708-2245</orcidid><orcidid>https://orcid.org/0000-0003-1212-9445</orcidid><orcidid>https://orcid.org/0000-0002-7349-5871</orcidid></search><sort><creationdate>20240701</creationdate><title>MSDE-Net: A Multi-Scale Dual-Encoding Network for Surgical Instrument Segmentation</title><author>Yang, Lei ; Gu, Yuge ; Bian, Guibin ; Liu, Yanhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-441d04a03bb92ee194399ffcd49dd761f17a994a254805f55f05cd9a618acd833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Biomedical imaging</topic><topic>Coding</topic><topic>Complementarity</topic><topic>Decoding</topic><topic>dual-branch encoder</topic><topic>Effectiveness</topic><topic>Feature extraction</topic><topic>feature fusion</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Information processing</topic><topic>Instruments</topic><topic>Medical instruments</topic><topic>Microscopes</topic><topic>Minimally Invasive Surgical Procedures - instrumentation</topic><topic>Minimally Invasive Surgical Procedures - methods</topic><topic>Multilayers</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Receptive field</topic><topic>Robotic surgery</topic><topic>Surgery</topic><topic>Surgical apparatus & instruments</topic><topic>Surgical instrument segmentation</topic><topic>Surgical Instruments</topic><topic>transformer</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Lei</creatorcontrib><creatorcontrib>Gu, Yuge</creatorcontrib><creatorcontrib>Bian, Guibin</creatorcontrib><creatorcontrib>Liu, Yanhong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Lei</au><au>Gu, Yuge</au><au>Bian, Guibin</au><au>Liu, Yanhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MSDE-Net: A Multi-Scale Dual-Encoding Network for Surgical Instrument Segmentation</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>28</volume><issue>7</issue><spage>4072</spage><epage>4083</epage><pages>4072-4083</pages><issn>2168-2194</issn><issn>2168-2208</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Minimally invasive surgery, which relies on surgical robots and microscopes, demands precise image segmentation to ensure safe and efficient procedures. Nevertheless, achieving accurate segmentation of surgical instruments remains challenging due to the complexity of the surgical environment. To tackle this issue, this paper introduces a novel multiscale dual-encoding segmentation network, termed MSDE-Net, designed to automatically and precisely segment surgical instruments. The proposed MSDE-Net leverages a dual-branch encoder comprising a convolutional neural network (CNN) branch and a transformer branch to effectively extract both local and global features. Moreover, an attention fusion block (AFB) is introduced to ensure effective information complementarity between the dual-branch encoding paths. Additionally, a multilayer context fusion block (MCF) is proposed to enhance the network's capacity to simultaneously extract global and local features. Finally, to extend the scope of global feature information under larger receptive fields, a multi-receptive field fusion (MRF) block is incorporated. Through comprehensive experimental evaluations on two publicly available datasets for surgical instrument segmentation, the proposed MSDE-Net demonstrates superior performance compared to existing methods.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38117619</pmid><doi>10.1109/JBHI.2023.3344716</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0282-1171</orcidid><orcidid>https://orcid.org/0000-0003-4708-2245</orcidid><orcidid>https://orcid.org/0000-0003-1212-9445</orcidid><orcidid>https://orcid.org/0000-0002-7349-5871</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2194 |
ispartof | IEEE journal of biomedical and health informatics, 2024-07, Vol.28 (7), p.4072-4083 |
issn | 2168-2194 2168-2208 2168-2208 |
language | eng |
recordid | cdi_proquest_journals_3075417963 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Artificial neural networks Biomedical imaging Coding Complementarity Decoding dual-branch encoder Effectiveness Feature extraction feature fusion Humans Image processing Image Processing, Computer-Assisted - methods Image segmentation Information processing Instruments Medical instruments Microscopes Minimally Invasive Surgical Procedures - instrumentation Minimally Invasive Surgical Procedures - methods Multilayers Neural networks Neural Networks, Computer Receptive field Robotic surgery Surgery Surgical apparatus & instruments Surgical instrument segmentation Surgical Instruments transformer Transformers |
title | MSDE-Net: A Multi-Scale Dual-Encoding Network for Surgical Instrument Segmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T13%3A40%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MSDE-Net:%20A%20Multi-Scale%20Dual-Encoding%20Network%20for%20Surgical%20Instrument%20Segmentation&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Yang,%20Lei&rft.date=2024-07-01&rft.volume=28&rft.issue=7&rft.spage=4072&rft.epage=4083&rft.pages=4072-4083&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2023.3344716&rft_dat=%3Cproquest_RIE%3E3075417963%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3075417963&rft_id=info:pmid/38117619&rft_ieee_id=10366786&rfr_iscdi=true |