MSDE-Net: A Multi-Scale Dual-Encoding Network for Surgical Instrument Segmentation

Minimally invasive surgery, which relies on surgical robots and microscopes, demands precise image segmentation to ensure safe and efficient procedures. Nevertheless, achieving accurate segmentation of surgical instruments remains challenging due to the complexity of the surgical environment. To tac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2024-07, Vol.28 (7), p.4072-4083
Hauptverfasser: Yang, Lei, Gu, Yuge, Bian, Guibin, Liu, Yanhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4083
container_issue 7
container_start_page 4072
container_title IEEE journal of biomedical and health informatics
container_volume 28
creator Yang, Lei
Gu, Yuge
Bian, Guibin
Liu, Yanhong
description Minimally invasive surgery, which relies on surgical robots and microscopes, demands precise image segmentation to ensure safe and efficient procedures. Nevertheless, achieving accurate segmentation of surgical instruments remains challenging due to the complexity of the surgical environment. To tackle this issue, this paper introduces a novel multiscale dual-encoding segmentation network, termed MSDE-Net, designed to automatically and precisely segment surgical instruments. The proposed MSDE-Net leverages a dual-branch encoder comprising a convolutional neural network (CNN) branch and a transformer branch to effectively extract both local and global features. Moreover, an attention fusion block (AFB) is introduced to ensure effective information complementarity between the dual-branch encoding paths. Additionally, a multilayer context fusion block (MCF) is proposed to enhance the network's capacity to simultaneously extract global and local features. Finally, to extend the scope of global feature information under larger receptive fields, a multi-receptive field fusion (MRF) block is incorporated. Through comprehensive experimental evaluations on two publicly available datasets for surgical instrument segmentation, the proposed MSDE-Net demonstrates superior performance compared to existing methods.
doi_str_mv 10.1109/JBHI.2023.3344716
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3075417963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10366786</ieee_id><sourcerecordid>3075417963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-441d04a03bb92ee194399ffcd49dd761f17a994a254805f55f05cd9a618acd833</originalsourceid><addsrcrecordid>eNpdkF1LwzAUhoMobsz9AEGk4I03nflqmng3t-kmm4LV65C1yejsx0xaxH9vyqaIuTnh8JyXlweAcwRHCEFx83g3X4wwxGRECKUxYkegjxHjIcaQH__8kaA9MHRuC_3jfiXYKegRjlDMkOiDl1UynYVPurkNxsGqLZo8TFJV6GDaqiKcVWmd5dUm8MBnbd8DU9sgae0m90ywqFxj21JXTZDoTTdVk9fVGTgxqnB6eJgD8HY_e53Mw-Xzw2IyXoYpgbgJKUUZpAqS9VpgrX1RIoQxaUZFlvlyBsVKCKpwRDmMTBQZGKWZUAxxlWackAG43ufubP3RatfIMnepLgpV6bp1EgtIo5hAzjx69Q_d1q2tfDtJYBxRFAvWBaI9ldraOauN3Nm8VPZLIig757JzLjvn8uDc31wektt1qbPfix_DHrjYA7nW-k8gYSz2zb4BblyC4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075417963</pqid></control><display><type>article</type><title>MSDE-Net: A Multi-Scale Dual-Encoding Network for Surgical Instrument Segmentation</title><source>IEEE Electronic Library (IEL)</source><creator>Yang, Lei ; Gu, Yuge ; Bian, Guibin ; Liu, Yanhong</creator><creatorcontrib>Yang, Lei ; Gu, Yuge ; Bian, Guibin ; Liu, Yanhong</creatorcontrib><description>Minimally invasive surgery, which relies on surgical robots and microscopes, demands precise image segmentation to ensure safe and efficient procedures. Nevertheless, achieving accurate segmentation of surgical instruments remains challenging due to the complexity of the surgical environment. To tackle this issue, this paper introduces a novel multiscale dual-encoding segmentation network, termed MSDE-Net, designed to automatically and precisely segment surgical instruments. The proposed MSDE-Net leverages a dual-branch encoder comprising a convolutional neural network (CNN) branch and a transformer branch to effectively extract both local and global features. Moreover, an attention fusion block (AFB) is introduced to ensure effective information complementarity between the dual-branch encoding paths. Additionally, a multilayer context fusion block (MCF) is proposed to enhance the network's capacity to simultaneously extract global and local features. Finally, to extend the scope of global feature information under larger receptive fields, a multi-receptive field fusion (MRF) block is incorporated. Through comprehensive experimental evaluations on two publicly available datasets for surgical instrument segmentation, the proposed MSDE-Net demonstrates superior performance compared to existing methods.</description><identifier>ISSN: 2168-2194</identifier><identifier>ISSN: 2168-2208</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2023.3344716</identifier><identifier>PMID: 38117619</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Biomedical imaging ; Coding ; Complementarity ; Decoding ; dual-branch encoder ; Effectiveness ; Feature extraction ; feature fusion ; Humans ; Image processing ; Image Processing, Computer-Assisted - methods ; Image segmentation ; Information processing ; Instruments ; Medical instruments ; Microscopes ; Minimally Invasive Surgical Procedures - instrumentation ; Minimally Invasive Surgical Procedures - methods ; Multilayers ; Neural networks ; Neural Networks, Computer ; Receptive field ; Robotic surgery ; Surgery ; Surgical apparatus &amp; instruments ; Surgical instrument segmentation ; Surgical Instruments ; transformer ; Transformers</subject><ispartof>IEEE journal of biomedical and health informatics, 2024-07, Vol.28 (7), p.4072-4083</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c302t-441d04a03bb92ee194399ffcd49dd761f17a994a254805f55f05cd9a618acd833</cites><orcidid>0000-0003-0282-1171 ; 0000-0003-4708-2245 ; 0000-0003-1212-9445 ; 0000-0002-7349-5871</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10366786$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10366786$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38117619$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Lei</creatorcontrib><creatorcontrib>Gu, Yuge</creatorcontrib><creatorcontrib>Bian, Guibin</creatorcontrib><creatorcontrib>Liu, Yanhong</creatorcontrib><title>MSDE-Net: A Multi-Scale Dual-Encoding Network for Surgical Instrument Segmentation</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>Minimally invasive surgery, which relies on surgical robots and microscopes, demands precise image segmentation to ensure safe and efficient procedures. Nevertheless, achieving accurate segmentation of surgical instruments remains challenging due to the complexity of the surgical environment. To tackle this issue, this paper introduces a novel multiscale dual-encoding segmentation network, termed MSDE-Net, designed to automatically and precisely segment surgical instruments. The proposed MSDE-Net leverages a dual-branch encoder comprising a convolutional neural network (CNN) branch and a transformer branch to effectively extract both local and global features. Moreover, an attention fusion block (AFB) is introduced to ensure effective information complementarity between the dual-branch encoding paths. Additionally, a multilayer context fusion block (MCF) is proposed to enhance the network's capacity to simultaneously extract global and local features. Finally, to extend the scope of global feature information under larger receptive fields, a multi-receptive field fusion (MRF) block is incorporated. Through comprehensive experimental evaluations on two publicly available datasets for surgical instrument segmentation, the proposed MSDE-Net demonstrates superior performance compared to existing methods.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Biomedical imaging</subject><subject>Coding</subject><subject>Complementarity</subject><subject>Decoding</subject><subject>dual-branch encoder</subject><subject>Effectiveness</subject><subject>Feature extraction</subject><subject>feature fusion</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Information processing</subject><subject>Instruments</subject><subject>Medical instruments</subject><subject>Microscopes</subject><subject>Minimally Invasive Surgical Procedures - instrumentation</subject><subject>Minimally Invasive Surgical Procedures - methods</subject><subject>Multilayers</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Receptive field</subject><subject>Robotic surgery</subject><subject>Surgery</subject><subject>Surgical apparatus &amp; instruments</subject><subject>Surgical instrument segmentation</subject><subject>Surgical Instruments</subject><subject>transformer</subject><subject>Transformers</subject><issn>2168-2194</issn><issn>2168-2208</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkF1LwzAUhoMobsz9AEGk4I03nflqmng3t-kmm4LV65C1yejsx0xaxH9vyqaIuTnh8JyXlweAcwRHCEFx83g3X4wwxGRECKUxYkegjxHjIcaQH__8kaA9MHRuC_3jfiXYKegRjlDMkOiDl1UynYVPurkNxsGqLZo8TFJV6GDaqiKcVWmd5dUm8MBnbd8DU9sgae0m90ywqFxj21JXTZDoTTdVk9fVGTgxqnB6eJgD8HY_e53Mw-Xzw2IyXoYpgbgJKUUZpAqS9VpgrX1RIoQxaUZFlvlyBsVKCKpwRDmMTBQZGKWZUAxxlWackAG43ufubP3RatfIMnepLgpV6bp1EgtIo5hAzjx69Q_d1q2tfDtJYBxRFAvWBaI9ldraOauN3Nm8VPZLIig757JzLjvn8uDc31wektt1qbPfix_DHrjYA7nW-k8gYSz2zb4BblyC4g</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Yang, Lei</creator><creator>Gu, Yuge</creator><creator>Bian, Guibin</creator><creator>Liu, Yanhong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0282-1171</orcidid><orcidid>https://orcid.org/0000-0003-4708-2245</orcidid><orcidid>https://orcid.org/0000-0003-1212-9445</orcidid><orcidid>https://orcid.org/0000-0002-7349-5871</orcidid></search><sort><creationdate>20240701</creationdate><title>MSDE-Net: A Multi-Scale Dual-Encoding Network for Surgical Instrument Segmentation</title><author>Yang, Lei ; Gu, Yuge ; Bian, Guibin ; Liu, Yanhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-441d04a03bb92ee194399ffcd49dd761f17a994a254805f55f05cd9a618acd833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Biomedical imaging</topic><topic>Coding</topic><topic>Complementarity</topic><topic>Decoding</topic><topic>dual-branch encoder</topic><topic>Effectiveness</topic><topic>Feature extraction</topic><topic>feature fusion</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Information processing</topic><topic>Instruments</topic><topic>Medical instruments</topic><topic>Microscopes</topic><topic>Minimally Invasive Surgical Procedures - instrumentation</topic><topic>Minimally Invasive Surgical Procedures - methods</topic><topic>Multilayers</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Receptive field</topic><topic>Robotic surgery</topic><topic>Surgery</topic><topic>Surgical apparatus &amp; instruments</topic><topic>Surgical instrument segmentation</topic><topic>Surgical Instruments</topic><topic>transformer</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Lei</creatorcontrib><creatorcontrib>Gu, Yuge</creatorcontrib><creatorcontrib>Bian, Guibin</creatorcontrib><creatorcontrib>Liu, Yanhong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Lei</au><au>Gu, Yuge</au><au>Bian, Guibin</au><au>Liu, Yanhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MSDE-Net: A Multi-Scale Dual-Encoding Network for Surgical Instrument Segmentation</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>28</volume><issue>7</issue><spage>4072</spage><epage>4083</epage><pages>4072-4083</pages><issn>2168-2194</issn><issn>2168-2208</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Minimally invasive surgery, which relies on surgical robots and microscopes, demands precise image segmentation to ensure safe and efficient procedures. Nevertheless, achieving accurate segmentation of surgical instruments remains challenging due to the complexity of the surgical environment. To tackle this issue, this paper introduces a novel multiscale dual-encoding segmentation network, termed MSDE-Net, designed to automatically and precisely segment surgical instruments. The proposed MSDE-Net leverages a dual-branch encoder comprising a convolutional neural network (CNN) branch and a transformer branch to effectively extract both local and global features. Moreover, an attention fusion block (AFB) is introduced to ensure effective information complementarity between the dual-branch encoding paths. Additionally, a multilayer context fusion block (MCF) is proposed to enhance the network's capacity to simultaneously extract global and local features. Finally, to extend the scope of global feature information under larger receptive fields, a multi-receptive field fusion (MRF) block is incorporated. Through comprehensive experimental evaluations on two publicly available datasets for surgical instrument segmentation, the proposed MSDE-Net demonstrates superior performance compared to existing methods.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38117619</pmid><doi>10.1109/JBHI.2023.3344716</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0282-1171</orcidid><orcidid>https://orcid.org/0000-0003-4708-2245</orcidid><orcidid>https://orcid.org/0000-0003-1212-9445</orcidid><orcidid>https://orcid.org/0000-0002-7349-5871</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2194
ispartof IEEE journal of biomedical and health informatics, 2024-07, Vol.28 (7), p.4072-4083
issn 2168-2194
2168-2208
2168-2208
language eng
recordid cdi_proquest_journals_3075417963
source IEEE Electronic Library (IEL)
subjects Algorithms
Artificial neural networks
Biomedical imaging
Coding
Complementarity
Decoding
dual-branch encoder
Effectiveness
Feature extraction
feature fusion
Humans
Image processing
Image Processing, Computer-Assisted - methods
Image segmentation
Information processing
Instruments
Medical instruments
Microscopes
Minimally Invasive Surgical Procedures - instrumentation
Minimally Invasive Surgical Procedures - methods
Multilayers
Neural networks
Neural Networks, Computer
Receptive field
Robotic surgery
Surgery
Surgical apparatus & instruments
Surgical instrument segmentation
Surgical Instruments
transformer
Transformers
title MSDE-Net: A Multi-Scale Dual-Encoding Network for Surgical Instrument Segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T13%3A40%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MSDE-Net:%20A%20Multi-Scale%20Dual-Encoding%20Network%20for%20Surgical%20Instrument%20Segmentation&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Yang,%20Lei&rft.date=2024-07-01&rft.volume=28&rft.issue=7&rft.spage=4072&rft.epage=4083&rft.pages=4072-4083&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2023.3344716&rft_dat=%3Cproquest_RIE%3E3075417963%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3075417963&rft_id=info:pmid/38117619&rft_ieee_id=10366786&rfr_iscdi=true