Examining between-sectors knowledge transfer in the pharmacology field
Understanding knowledge transfer patterns is essential in providing valuable insights for shaping innovations and supporting economic growth. Our study identifies the main contributors and patterns of knowledge transfer within the pharmacology field from 2000 to 2019 by analyzing citation linkage an...
Gespeichert in:
Veröffentlicht in: | Scientometrics 2024, Vol.129 (6), p.3115-3147 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3147 |
---|---|
container_issue | 6 |
container_start_page | 3115 |
container_title | Scientometrics |
container_volume | 129 |
creator | Syafiandini, Arida Ferti Yoon, Jeeyoung Lee, Soobin Song, Chaemin Yan, Erjia Song, Min |
description | Understanding knowledge transfer patterns is essential in providing valuable insights for shaping innovations and supporting economic growth. Our study identifies the main contributors and patterns of knowledge transfer within the pharmacology field from 2000 to 2019 by analyzing citation linkage and collaborative information between sector categories, affiliated institutions, and biomedical entities in articles from the Web of Science database. Our main contribution is mapping the knowledge transfer flow and identifying the main contributors to knowledge transfer within the pharmacology domain. We manually categorized affiliated institutions into four sector categories to observe knowledge transfer patterns. Subsequently, we performed a citation linkage analysis at three levels: sector categories, institution names, and biomedical entities. The results show that academic institutions are the most significant contributors to knowledge transfer in the pharmacology field, followed by commercial and government institutions. Although the majority of knowledge transfers originated from academic institutions, our study uncovered notable transfers from commercial to academic sectors and from government to academic sectors. Through named entity analysis on diseases, drugs, and genes, we found that research in the pharmacology field predominantly concentrates on subjects pertaining to cancers, chronic diseases, and neurodegenerative disorders. |
doi_str_mv | 10.1007/s11192-024-05040-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3075279576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3075279576</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-2052a4f28136ebf431e07dfe07f075954d4557827b61a6d1676ab5f3ad86acc43</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwB5giMRue7fgjI6paQEJigdlyEjtNSe1ipyr99xiCxMby7nLPfdJB6JrALQGQd4kQUlEMtMTAoQQMJ2hGuFKYKkFO0QwIU7giDM7RRUobyBADNUOr5afZ9r73XVHb8WCtx8k2Y4ipePfhMNi2s8UYjU_OxqL3xbi2xW5t4tY0YQjdsXC9HdpLdObMkOzVb87R22r5unjEzy8PT4v7Z9xQCSOmwKkpHVWECVu7khELsnX5OJC84mVbci4VlbUgRrRESGFq7phplTBNU7I5upl2dzF87G0a9Sbso88vNcsLVFZcityiU6uJIaVond7FfmviURPQ37705EtnX_rHl4YMsQlKuew7G_-m_6G-ABYXbTo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075279576</pqid></control><display><type>article</type><title>Examining between-sectors knowledge transfer in the pharmacology field</title><source>SpringerLink Journals - AutoHoldings</source><creator>Syafiandini, Arida Ferti ; Yoon, Jeeyoung ; Lee, Soobin ; Song, Chaemin ; Yan, Erjia ; Song, Min</creator><creatorcontrib>Syafiandini, Arida Ferti ; Yoon, Jeeyoung ; Lee, Soobin ; Song, Chaemin ; Yan, Erjia ; Song, Min</creatorcontrib><description>Understanding knowledge transfer patterns is essential in providing valuable insights for shaping innovations and supporting economic growth. Our study identifies the main contributors and patterns of knowledge transfer within the pharmacology field from 2000 to 2019 by analyzing citation linkage and collaborative information between sector categories, affiliated institutions, and biomedical entities in articles from the Web of Science database. Our main contribution is mapping the knowledge transfer flow and identifying the main contributors to knowledge transfer within the pharmacology domain. We manually categorized affiliated institutions into four sector categories to observe knowledge transfer patterns. Subsequently, we performed a citation linkage analysis at three levels: sector categories, institution names, and biomedical entities. The results show that academic institutions are the most significant contributors to knowledge transfer in the pharmacology field, followed by commercial and government institutions. Although the majority of knowledge transfers originated from academic institutions, our study uncovered notable transfers from commercial to academic sectors and from government to academic sectors. Through named entity analysis on diseases, drugs, and genes, we found that research in the pharmacology field predominantly concentrates on subjects pertaining to cancers, chronic diseases, and neurodegenerative disorders.</description><identifier>ISSN: 0138-9130</identifier><identifier>EISSN: 1588-2861</identifier><identifier>DOI: 10.1007/s11192-024-05040-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Categories ; Citation analysis ; Computer Science ; Economic development ; Economic growth ; Information Storage and Retrieval ; Institutions ; Knowledge ; Knowledge management ; Library Science ; Linkage analysis ; Medical innovations ; Neurodegenerative diseases ; Pharmacology</subject><ispartof>Scientometrics, 2024, Vol.129 (6), p.3115-3147</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-2052a4f28136ebf431e07dfe07f075954d4557827b61a6d1676ab5f3ad86acc43</cites><orcidid>0000-0003-3255-1600</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11192-024-05040-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11192-024-05040-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Syafiandini, Arida Ferti</creatorcontrib><creatorcontrib>Yoon, Jeeyoung</creatorcontrib><creatorcontrib>Lee, Soobin</creatorcontrib><creatorcontrib>Song, Chaemin</creatorcontrib><creatorcontrib>Yan, Erjia</creatorcontrib><creatorcontrib>Song, Min</creatorcontrib><title>Examining between-sectors knowledge transfer in the pharmacology field</title><title>Scientometrics</title><addtitle>Scientometrics</addtitle><description>Understanding knowledge transfer patterns is essential in providing valuable insights for shaping innovations and supporting economic growth. Our study identifies the main contributors and patterns of knowledge transfer within the pharmacology field from 2000 to 2019 by analyzing citation linkage and collaborative information between sector categories, affiliated institutions, and biomedical entities in articles from the Web of Science database. Our main contribution is mapping the knowledge transfer flow and identifying the main contributors to knowledge transfer within the pharmacology domain. We manually categorized affiliated institutions into four sector categories to observe knowledge transfer patterns. Subsequently, we performed a citation linkage analysis at three levels: sector categories, institution names, and biomedical entities. The results show that academic institutions are the most significant contributors to knowledge transfer in the pharmacology field, followed by commercial and government institutions. Although the majority of knowledge transfers originated from academic institutions, our study uncovered notable transfers from commercial to academic sectors and from government to academic sectors. Through named entity analysis on diseases, drugs, and genes, we found that research in the pharmacology field predominantly concentrates on subjects pertaining to cancers, chronic diseases, and neurodegenerative disorders.</description><subject>Categories</subject><subject>Citation analysis</subject><subject>Computer Science</subject><subject>Economic development</subject><subject>Economic growth</subject><subject>Information Storage and Retrieval</subject><subject>Institutions</subject><subject>Knowledge</subject><subject>Knowledge management</subject><subject>Library Science</subject><subject>Linkage analysis</subject><subject>Medical innovations</subject><subject>Neurodegenerative diseases</subject><subject>Pharmacology</subject><issn>0138-9130</issn><issn>1588-2861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EEqXwB5giMRue7fgjI6paQEJigdlyEjtNSe1ipyr99xiCxMby7nLPfdJB6JrALQGQd4kQUlEMtMTAoQQMJ2hGuFKYKkFO0QwIU7giDM7RRUobyBADNUOr5afZ9r73XVHb8WCtx8k2Y4ipePfhMNi2s8UYjU_OxqL3xbi2xW5t4tY0YQjdsXC9HdpLdObMkOzVb87R22r5unjEzy8PT4v7Z9xQCSOmwKkpHVWECVu7khELsnX5OJC84mVbci4VlbUgRrRESGFq7phplTBNU7I5upl2dzF87G0a9Sbso88vNcsLVFZcityiU6uJIaVond7FfmviURPQ37705EtnX_rHl4YMsQlKuew7G_-m_6G-ABYXbTo</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Syafiandini, Arida Ferti</creator><creator>Yoon, Jeeyoung</creator><creator>Lee, Soobin</creator><creator>Song, Chaemin</creator><creator>Yan, Erjia</creator><creator>Song, Min</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>E3H</scope><scope>F2A</scope><orcidid>https://orcid.org/0000-0003-3255-1600</orcidid></search><sort><creationdate>2024</creationdate><title>Examining between-sectors knowledge transfer in the pharmacology field</title><author>Syafiandini, Arida Ferti ; Yoon, Jeeyoung ; Lee, Soobin ; Song, Chaemin ; Yan, Erjia ; Song, Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-2052a4f28136ebf431e07dfe07f075954d4557827b61a6d1676ab5f3ad86acc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Categories</topic><topic>Citation analysis</topic><topic>Computer Science</topic><topic>Economic development</topic><topic>Economic growth</topic><topic>Information Storage and Retrieval</topic><topic>Institutions</topic><topic>Knowledge</topic><topic>Knowledge management</topic><topic>Library Science</topic><topic>Linkage analysis</topic><topic>Medical innovations</topic><topic>Neurodegenerative diseases</topic><topic>Pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Syafiandini, Arida Ferti</creatorcontrib><creatorcontrib>Yoon, Jeeyoung</creatorcontrib><creatorcontrib>Lee, Soobin</creatorcontrib><creatorcontrib>Song, Chaemin</creatorcontrib><creatorcontrib>Yan, Erjia</creatorcontrib><creatorcontrib>Song, Min</creatorcontrib><collection>CrossRef</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><jtitle>Scientometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Syafiandini, Arida Ferti</au><au>Yoon, Jeeyoung</au><au>Lee, Soobin</au><au>Song, Chaemin</au><au>Yan, Erjia</au><au>Song, Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Examining between-sectors knowledge transfer in the pharmacology field</atitle><jtitle>Scientometrics</jtitle><stitle>Scientometrics</stitle><date>2024</date><risdate>2024</risdate><volume>129</volume><issue>6</issue><spage>3115</spage><epage>3147</epage><pages>3115-3147</pages><issn>0138-9130</issn><eissn>1588-2861</eissn><abstract>Understanding knowledge transfer patterns is essential in providing valuable insights for shaping innovations and supporting economic growth. Our study identifies the main contributors and patterns of knowledge transfer within the pharmacology field from 2000 to 2019 by analyzing citation linkage and collaborative information between sector categories, affiliated institutions, and biomedical entities in articles from the Web of Science database. Our main contribution is mapping the knowledge transfer flow and identifying the main contributors to knowledge transfer within the pharmacology domain. We manually categorized affiliated institutions into four sector categories to observe knowledge transfer patterns. Subsequently, we performed a citation linkage analysis at three levels: sector categories, institution names, and biomedical entities. The results show that academic institutions are the most significant contributors to knowledge transfer in the pharmacology field, followed by commercial and government institutions. Although the majority of knowledge transfers originated from academic institutions, our study uncovered notable transfers from commercial to academic sectors and from government to academic sectors. Through named entity analysis on diseases, drugs, and genes, we found that research in the pharmacology field predominantly concentrates on subjects pertaining to cancers, chronic diseases, and neurodegenerative disorders.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11192-024-05040-0</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0003-3255-1600</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0138-9130 |
ispartof | Scientometrics, 2024, Vol.129 (6), p.3115-3147 |
issn | 0138-9130 1588-2861 |
language | eng |
recordid | cdi_proquest_journals_3075279576 |
source | SpringerLink Journals - AutoHoldings |
subjects | Categories Citation analysis Computer Science Economic development Economic growth Information Storage and Retrieval Institutions Knowledge Knowledge management Library Science Linkage analysis Medical innovations Neurodegenerative diseases Pharmacology |
title | Examining between-sectors knowledge transfer in the pharmacology field |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T07%3A44%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Examining%20between-sectors%20knowledge%20transfer%20in%20the%20pharmacology%20field&rft.jtitle=Scientometrics&rft.au=Syafiandini,%20Arida%20Ferti&rft.date=2024&rft.volume=129&rft.issue=6&rft.spage=3115&rft.epage=3147&rft.pages=3115-3147&rft.issn=0138-9130&rft.eissn=1588-2861&rft_id=info:doi/10.1007/s11192-024-05040-0&rft_dat=%3Cproquest_cross%3E3075279576%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3075279576&rft_id=info:pmid/&rfr_iscdi=true |