Categorification of the plurigenera of Gorenstein normal surface singularities
Consider a complex normal surface singularity and its three plurigenera, the m -th L 2 –plurigenus of Watanabe, the m -th plurigenus of Knöller and the m -th log-plurigenus of Morales. For any of these invariants we construct a double graded Z [ U ] –module, whose Euler characteristic is the chosen...
Gespeichert in:
Veröffentlicht in: | Mathematische Zeitschrift 2024-08, Vol.307 (4), Article 68 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Mathematische Zeitschrift |
container_volume | 307 |
creator | Némethi, András Schefler, Gergő |
description | Consider a complex normal surface singularity and its three plurigenera, the
m
-th
L
2
–plurigenus of Watanabe, the
m
-th plurigenus of Knöller and the
m
-th log-plurigenus of Morales. For any of these invariants we construct a double graded
Z
[
U
]
–module, whose Euler characteristic is the chosen plurigenus. The three outputs are compared with the analytic lattice cohomology of the germ, whose Euler characteristic is the classical geometric genus. |
doi_str_mv | 10.1007/s00209-024-03530-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3075278065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3075278065</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-6e4b72cc4d74dbc7c5c2cf704fb301889ec319a214901ca66af71b7cd66f27513</originalsourceid><addsrcrecordid>eNp9kE1LwzAYx4MoOKdfwFPBc_TJW5MeZegUhl70HNIsqRldMpP24Le3s4I3Tw_83x74IXRN4JYAyLsCQKHBQDkGJhhgdYIWhDOKiaLsFC0mX2ChJD9HF6XsACZT8gV6WZnBdSkHH6wZQopV8tXw4apDP-bQueiyOUrrlF0sgwuxiinvTV-VMXtjXVVC7Mbe5DAEVy7RmTd9cVe_d4neHx_eVk9487p-Xt1vsKUSBlw73kpqLd9Kvm2ttMJS6yVw3zIgSjXOMtIYSngDxJq6Nl6SVtptXXsqBWFLdDPvHnL6HF0Z9C6NOU4vNQMpqFRQiylF55TNqZTsvD7ksDf5SxPQR2565qYnbvqHm1ZTic2lMoVj5_Lf9D-tb_h4cQk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075278065</pqid></control><display><type>article</type><title>Categorification of the plurigenera of Gorenstein normal surface singularities</title><source>SpringerLink Journals - AutoHoldings</source><creator>Némethi, András ; Schefler, Gergő</creator><creatorcontrib>Némethi, András ; Schefler, Gergő</creatorcontrib><description>Consider a complex normal surface singularity and its three plurigenera, the
m
-th
L
2
–plurigenus of Watanabe, the
m
-th plurigenus of Knöller and the
m
-th log-plurigenus of Morales. For any of these invariants we construct a double graded
Z
[
U
]
–module, whose Euler characteristic is the chosen plurigenus. The three outputs are compared with the analytic lattice cohomology of the germ, whose Euler characteristic is the classical geometric genus.</description><identifier>ISSN: 0025-5874</identifier><identifier>EISSN: 1432-1823</identifier><identifier>DOI: 10.1007/s00209-024-03530-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Homology ; Mathematics ; Mathematics and Statistics ; Singularities</subject><ispartof>Mathematische Zeitschrift, 2024-08, Vol.307 (4), Article 68</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-6e4b72cc4d74dbc7c5c2cf704fb301889ec319a214901ca66af71b7cd66f27513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00209-024-03530-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00209-024-03530-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Némethi, András</creatorcontrib><creatorcontrib>Schefler, Gergő</creatorcontrib><title>Categorification of the plurigenera of Gorenstein normal surface singularities</title><title>Mathematische Zeitschrift</title><addtitle>Math. Z</addtitle><description>Consider a complex normal surface singularity and its three plurigenera, the
m
-th
L
2
–plurigenus of Watanabe, the
m
-th plurigenus of Knöller and the
m
-th log-plurigenus of Morales. For any of these invariants we construct a double graded
Z
[
U
]
–module, whose Euler characteristic is the chosen plurigenus. The three outputs are compared with the analytic lattice cohomology of the germ, whose Euler characteristic is the classical geometric genus.</description><subject>Homology</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Singularities</subject><issn>0025-5874</issn><issn>1432-1823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1LwzAYx4MoOKdfwFPBc_TJW5MeZegUhl70HNIsqRldMpP24Le3s4I3Tw_83x74IXRN4JYAyLsCQKHBQDkGJhhgdYIWhDOKiaLsFC0mX2ChJD9HF6XsACZT8gV6WZnBdSkHH6wZQopV8tXw4apDP-bQueiyOUrrlF0sgwuxiinvTV-VMXtjXVVC7Mbe5DAEVy7RmTd9cVe_d4neHx_eVk9487p-Xt1vsKUSBlw73kpqLd9Kvm2ttMJS6yVw3zIgSjXOMtIYSngDxJq6Nl6SVtptXXsqBWFLdDPvHnL6HF0Z9C6NOU4vNQMpqFRQiylF55TNqZTsvD7ksDf5SxPQR2565qYnbvqHm1ZTic2lMoVj5_Lf9D-tb_h4cQk</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Némethi, András</creator><creator>Schefler, Gergő</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240801</creationdate><title>Categorification of the plurigenera of Gorenstein normal surface singularities</title><author>Némethi, András ; Schefler, Gergő</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-6e4b72cc4d74dbc7c5c2cf704fb301889ec319a214901ca66af71b7cd66f27513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Homology</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Singularities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Némethi, András</creatorcontrib><creatorcontrib>Schefler, Gergő</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Mathematische Zeitschrift</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Némethi, András</au><au>Schefler, Gergő</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Categorification of the plurigenera of Gorenstein normal surface singularities</atitle><jtitle>Mathematische Zeitschrift</jtitle><stitle>Math. Z</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>307</volume><issue>4</issue><artnum>68</artnum><issn>0025-5874</issn><eissn>1432-1823</eissn><abstract>Consider a complex normal surface singularity and its three plurigenera, the
m
-th
L
2
–plurigenus of Watanabe, the
m
-th plurigenus of Knöller and the
m
-th log-plurigenus of Morales. For any of these invariants we construct a double graded
Z
[
U
]
–module, whose Euler characteristic is the chosen plurigenus. The three outputs are compared with the analytic lattice cohomology of the germ, whose Euler characteristic is the classical geometric genus.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00209-024-03530-8</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5874 |
ispartof | Mathematische Zeitschrift, 2024-08, Vol.307 (4), Article 68 |
issn | 0025-5874 1432-1823 |
language | eng |
recordid | cdi_proquest_journals_3075278065 |
source | SpringerLink Journals - AutoHoldings |
subjects | Homology Mathematics Mathematics and Statistics Singularities |
title | Categorification of the plurigenera of Gorenstein normal surface singularities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A04%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Categorification%20of%20the%20plurigenera%20of%20Gorenstein%20normal%20surface%20singularities&rft.jtitle=Mathematische%20Zeitschrift&rft.au=N%C3%A9methi,%20Andr%C3%A1s&rft.date=2024-08-01&rft.volume=307&rft.issue=4&rft.artnum=68&rft.issn=0025-5874&rft.eissn=1432-1823&rft_id=info:doi/10.1007/s00209-024-03530-8&rft_dat=%3Cproquest_cross%3E3075278065%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3075278065&rft_id=info:pmid/&rfr_iscdi=true |