Bilayer Gradient Hydrogel with Topological Crosslinking for High‐Sensitivity Tactile Perception and Information Encryption
Human fingers possess stable high sensitivity and a wide range of tactile perception, attributed to the gradient microstructure and the interlocking collagen fiber on the skin's surface. However, challenges persist in achieving simultaneous enhancement of multiple functionalities in artificial...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2024-07, Vol.34 (27), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 27 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 34 |
creator | Zhou, Shuai Han, Tian‐Hang Ding, Lang Ru, Enqi Zhang, Chen Zhang, Yu‐Jia Yi, Chen‐Xin Sun, Tian‐Shu Luo, Zhen‐Yang Liu, Yao |
description | Human fingers possess stable high sensitivity and a wide range of tactile perception, attributed to the gradient microstructure and the interlocking collagen fiber on the skin's surface. However, challenges persist in achieving simultaneous enhancement of multiple functionalities in artificial skin. Inspired by the unique structure of the skin, a two‐step process involving ion diffusion‐induced and strong‐weak topological crosslinking is synergistically employed to fabricate a bilayer gradient hydrogel. Zn2+ initially diffuses to induce the formation of weak bonds, imparting elasticity. Subsequently, Fe3+/Zn2+ diffusion constructs a strong‐weak topologically crosslinked network, enhancing the toughness of the gel while reducing the brittleness associated with robust bonds. Due to its distinctive design, the gel employs an adaptive energy dissipation strategy subjected to large and small stress, ensuring high sensitivity (3.31 kPa−1, 0–2 kPa), wide sensing range (0.4–40.6 kPa), and exceptional stability (500 cycles). This flexible approach enables programmable design in three dimensions, including ion diffusion type, direction, and shape. This gel can detect the gentle brushing of feathers and human body movements. It utilizes significant differences generated by magnitudes of stress to perform binary information encryption. This study introduces a novel strategy for preparing skin‐like gels, offering promising potential for expanding their applications in complex scenarios.
The flexible network induced by weak Zn2+ diffusion undergoes simultaneous sacrifice and reconstruction when subjected to loading, endowing a bilayer gradient gel with high sensitivity. Through strong‐weak Fe3+/Zn2+ dual‐ion diffusion, a topological cross‐linked network is constructed, and the robust coordination imparts a wide detection range. Weak bonds, serving as a buffer, alleviate hysteresis induced by the fracture of brittle bonds. |
doi_str_mv | 10.1002/adfm.202313012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3075033816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3075033816</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2722-423314676e73a23c8d220ca17710404404895cb74b00296cb17d296b64c749b63</originalsourceid><addsrcrecordid>eNqFUE1Lw0AQXUTBWr16XvCcul_NJsda7QdUFKzgLWw2m3Rruls3qSXgwZ_gb_SXuGmlHoWBN8O8N8N7AFxi1MMIkWuR5aseQYRiijA5Ah0c4jCgiETHhx6_nIKzqloihDmnrAM-bnQpGuXg2IlMK1PDSZM5W6gSbnW9gHO7tqUttBQlHDpbVaU2r9oUMLcOTnSx-P78elKm0rV-13UD50LWulTwUTmp1rW2BgqTwanx_JXYzXdGuma3OgcnuSgrdfGLXfA8upsPJ8HsYTwdDmaBJJyQgBFKMQt5qDgVhMooIwRJ4R1gxBDzFcV9mXKW-hjiUKaYZx7TkEnO4jSkXXC1v7t29m2jqjpZ2o0z_mVCEe8jSiPcsnp7lmx9OpUna6dXwjUJRkmbcNImnBwS9oJ4L9h6x80_7GRwO7r_0_4AD5WBHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075033816</pqid></control><display><type>article</type><title>Bilayer Gradient Hydrogel with Topological Crosslinking for High‐Sensitivity Tactile Perception and Information Encryption</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhou, Shuai ; Han, Tian‐Hang ; Ding, Lang ; Ru, Enqi ; Zhang, Chen ; Zhang, Yu‐Jia ; Yi, Chen‐Xin ; Sun, Tian‐Shu ; Luo, Zhen‐Yang ; Liu, Yao</creator><creatorcontrib>Zhou, Shuai ; Han, Tian‐Hang ; Ding, Lang ; Ru, Enqi ; Zhang, Chen ; Zhang, Yu‐Jia ; Yi, Chen‐Xin ; Sun, Tian‐Shu ; Luo, Zhen‐Yang ; Liu, Yao</creatorcontrib><description>Human fingers possess stable high sensitivity and a wide range of tactile perception, attributed to the gradient microstructure and the interlocking collagen fiber on the skin's surface. However, challenges persist in achieving simultaneous enhancement of multiple functionalities in artificial skin. Inspired by the unique structure of the skin, a two‐step process involving ion diffusion‐induced and strong‐weak topological crosslinking is synergistically employed to fabricate a bilayer gradient hydrogel. Zn2+ initially diffuses to induce the formation of weak bonds, imparting elasticity. Subsequently, Fe3+/Zn2+ diffusion constructs a strong‐weak topologically crosslinked network, enhancing the toughness of the gel while reducing the brittleness associated with robust bonds. Due to its distinctive design, the gel employs an adaptive energy dissipation strategy subjected to large and small stress, ensuring high sensitivity (3.31 kPa−1, 0–2 kPa), wide sensing range (0.4–40.6 kPa), and exceptional stability (500 cycles). This flexible approach enables programmable design in three dimensions, including ion diffusion type, direction, and shape. This gel can detect the gentle brushing of feathers and human body movements. It utilizes significant differences generated by magnitudes of stress to perform binary information encryption. This study introduces a novel strategy for preparing skin‐like gels, offering promising potential for expanding their applications in complex scenarios.
The flexible network induced by weak Zn2+ diffusion undergoes simultaneous sacrifice and reconstruction when subjected to loading, endowing a bilayer gradient gel with high sensitivity. Through strong‐weak Fe3+/Zn2+ dual‐ion diffusion, a topological cross‐linked network is constructed, and the robust coordination imparts a wide detection range. Weak bonds, serving as a buffer, alleviate hysteresis induced by the fracture of brittle bonds.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202313012</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>adaptive energy dissipation ; Bonding strength ; Crosslinking ; Energy dissipation ; Hydrogels ; information encryption ; Ion diffusion ; ion diffusion‐induced ; Perception ; Sensitivity ; Skin ; Tactile discrimination ; tactile perception ; topological crosslinking ; Topology</subject><ispartof>Advanced functional materials, 2024-07, Vol.34 (27), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2722-423314676e73a23c8d220ca17710404404895cb74b00296cb17d296b64c749b63</cites><orcidid>0000-0002-7646-1888</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202313012$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202313012$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zhou, Shuai</creatorcontrib><creatorcontrib>Han, Tian‐Hang</creatorcontrib><creatorcontrib>Ding, Lang</creatorcontrib><creatorcontrib>Ru, Enqi</creatorcontrib><creatorcontrib>Zhang, Chen</creatorcontrib><creatorcontrib>Zhang, Yu‐Jia</creatorcontrib><creatorcontrib>Yi, Chen‐Xin</creatorcontrib><creatorcontrib>Sun, Tian‐Shu</creatorcontrib><creatorcontrib>Luo, Zhen‐Yang</creatorcontrib><creatorcontrib>Liu, Yao</creatorcontrib><title>Bilayer Gradient Hydrogel with Topological Crosslinking for High‐Sensitivity Tactile Perception and Information Encryption</title><title>Advanced functional materials</title><description>Human fingers possess stable high sensitivity and a wide range of tactile perception, attributed to the gradient microstructure and the interlocking collagen fiber on the skin's surface. However, challenges persist in achieving simultaneous enhancement of multiple functionalities in artificial skin. Inspired by the unique structure of the skin, a two‐step process involving ion diffusion‐induced and strong‐weak topological crosslinking is synergistically employed to fabricate a bilayer gradient hydrogel. Zn2+ initially diffuses to induce the formation of weak bonds, imparting elasticity. Subsequently, Fe3+/Zn2+ diffusion constructs a strong‐weak topologically crosslinked network, enhancing the toughness of the gel while reducing the brittleness associated with robust bonds. Due to its distinctive design, the gel employs an adaptive energy dissipation strategy subjected to large and small stress, ensuring high sensitivity (3.31 kPa−1, 0–2 kPa), wide sensing range (0.4–40.6 kPa), and exceptional stability (500 cycles). This flexible approach enables programmable design in three dimensions, including ion diffusion type, direction, and shape. This gel can detect the gentle brushing of feathers and human body movements. It utilizes significant differences generated by magnitudes of stress to perform binary information encryption. This study introduces a novel strategy for preparing skin‐like gels, offering promising potential for expanding their applications in complex scenarios.
The flexible network induced by weak Zn2+ diffusion undergoes simultaneous sacrifice and reconstruction when subjected to loading, endowing a bilayer gradient gel with high sensitivity. Through strong‐weak Fe3+/Zn2+ dual‐ion diffusion, a topological cross‐linked network is constructed, and the robust coordination imparts a wide detection range. Weak bonds, serving as a buffer, alleviate hysteresis induced by the fracture of brittle bonds.</description><subject>adaptive energy dissipation</subject><subject>Bonding strength</subject><subject>Crosslinking</subject><subject>Energy dissipation</subject><subject>Hydrogels</subject><subject>information encryption</subject><subject>Ion diffusion</subject><subject>ion diffusion‐induced</subject><subject>Perception</subject><subject>Sensitivity</subject><subject>Skin</subject><subject>Tactile discrimination</subject><subject>tactile perception</subject><subject>topological crosslinking</subject><subject>Topology</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFUE1Lw0AQXUTBWr16XvCcul_NJsda7QdUFKzgLWw2m3Rruls3qSXgwZ_gb_SXuGmlHoWBN8O8N8N7AFxi1MMIkWuR5aseQYRiijA5Ah0c4jCgiETHhx6_nIKzqloihDmnrAM-bnQpGuXg2IlMK1PDSZM5W6gSbnW9gHO7tqUttBQlHDpbVaU2r9oUMLcOTnSx-P78elKm0rV-13UD50LWulTwUTmp1rW2BgqTwanx_JXYzXdGuma3OgcnuSgrdfGLXfA8upsPJ8HsYTwdDmaBJJyQgBFKMQt5qDgVhMooIwRJ4R1gxBDzFcV9mXKW-hjiUKaYZx7TkEnO4jSkXXC1v7t29m2jqjpZ2o0z_mVCEe8jSiPcsnp7lmx9OpUna6dXwjUJRkmbcNImnBwS9oJ4L9h6x80_7GRwO7r_0_4AD5WBHA</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Zhou, Shuai</creator><creator>Han, Tian‐Hang</creator><creator>Ding, Lang</creator><creator>Ru, Enqi</creator><creator>Zhang, Chen</creator><creator>Zhang, Yu‐Jia</creator><creator>Yi, Chen‐Xin</creator><creator>Sun, Tian‐Shu</creator><creator>Luo, Zhen‐Yang</creator><creator>Liu, Yao</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7646-1888</orcidid></search><sort><creationdate>20240701</creationdate><title>Bilayer Gradient Hydrogel with Topological Crosslinking for High‐Sensitivity Tactile Perception and Information Encryption</title><author>Zhou, Shuai ; Han, Tian‐Hang ; Ding, Lang ; Ru, Enqi ; Zhang, Chen ; Zhang, Yu‐Jia ; Yi, Chen‐Xin ; Sun, Tian‐Shu ; Luo, Zhen‐Yang ; Liu, Yao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2722-423314676e73a23c8d220ca17710404404895cb74b00296cb17d296b64c749b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>adaptive energy dissipation</topic><topic>Bonding strength</topic><topic>Crosslinking</topic><topic>Energy dissipation</topic><topic>Hydrogels</topic><topic>information encryption</topic><topic>Ion diffusion</topic><topic>ion diffusion‐induced</topic><topic>Perception</topic><topic>Sensitivity</topic><topic>Skin</topic><topic>Tactile discrimination</topic><topic>tactile perception</topic><topic>topological crosslinking</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Shuai</creatorcontrib><creatorcontrib>Han, Tian‐Hang</creatorcontrib><creatorcontrib>Ding, Lang</creatorcontrib><creatorcontrib>Ru, Enqi</creatorcontrib><creatorcontrib>Zhang, Chen</creatorcontrib><creatorcontrib>Zhang, Yu‐Jia</creatorcontrib><creatorcontrib>Yi, Chen‐Xin</creatorcontrib><creatorcontrib>Sun, Tian‐Shu</creatorcontrib><creatorcontrib>Luo, Zhen‐Yang</creatorcontrib><creatorcontrib>Liu, Yao</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Shuai</au><au>Han, Tian‐Hang</au><au>Ding, Lang</au><au>Ru, Enqi</au><au>Zhang, Chen</au><au>Zhang, Yu‐Jia</au><au>Yi, Chen‐Xin</au><au>Sun, Tian‐Shu</au><au>Luo, Zhen‐Yang</au><au>Liu, Yao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bilayer Gradient Hydrogel with Topological Crosslinking for High‐Sensitivity Tactile Perception and Information Encryption</atitle><jtitle>Advanced functional materials</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>34</volume><issue>27</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Human fingers possess stable high sensitivity and a wide range of tactile perception, attributed to the gradient microstructure and the interlocking collagen fiber on the skin's surface. However, challenges persist in achieving simultaneous enhancement of multiple functionalities in artificial skin. Inspired by the unique structure of the skin, a two‐step process involving ion diffusion‐induced and strong‐weak topological crosslinking is synergistically employed to fabricate a bilayer gradient hydrogel. Zn2+ initially diffuses to induce the formation of weak bonds, imparting elasticity. Subsequently, Fe3+/Zn2+ diffusion constructs a strong‐weak topologically crosslinked network, enhancing the toughness of the gel while reducing the brittleness associated with robust bonds. Due to its distinctive design, the gel employs an adaptive energy dissipation strategy subjected to large and small stress, ensuring high sensitivity (3.31 kPa−1, 0–2 kPa), wide sensing range (0.4–40.6 kPa), and exceptional stability (500 cycles). This flexible approach enables programmable design in three dimensions, including ion diffusion type, direction, and shape. This gel can detect the gentle brushing of feathers and human body movements. It utilizes significant differences generated by magnitudes of stress to perform binary information encryption. This study introduces a novel strategy for preparing skin‐like gels, offering promising potential for expanding their applications in complex scenarios.
The flexible network induced by weak Zn2+ diffusion undergoes simultaneous sacrifice and reconstruction when subjected to loading, endowing a bilayer gradient gel with high sensitivity. Through strong‐weak Fe3+/Zn2+ dual‐ion diffusion, a topological cross‐linked network is constructed, and the robust coordination imparts a wide detection range. Weak bonds, serving as a buffer, alleviate hysteresis induced by the fracture of brittle bonds.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202313012</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-7646-1888</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2024-07, Vol.34 (27), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_3075033816 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | adaptive energy dissipation Bonding strength Crosslinking Energy dissipation Hydrogels information encryption Ion diffusion ion diffusion‐induced Perception Sensitivity Skin Tactile discrimination tactile perception topological crosslinking Topology |
title | Bilayer Gradient Hydrogel with Topological Crosslinking for High‐Sensitivity Tactile Perception and Information Encryption |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T04%3A16%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bilayer%20Gradient%20Hydrogel%20with%20Topological%20Crosslinking%20for%20High%E2%80%90Sensitivity%20Tactile%20Perception%20and%20Information%20Encryption&rft.jtitle=Advanced%20functional%20materials&rft.au=Zhou,%20Shuai&rft.date=2024-07-01&rft.volume=34&rft.issue=27&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202313012&rft_dat=%3Cproquest_cross%3E3075033816%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3075033816&rft_id=info:pmid/&rfr_iscdi=true |