Bilayer Gradient Hydrogel with Topological Crosslinking for High‐Sensitivity Tactile Perception and Information Encryption

Human fingers possess stable high sensitivity and a wide range of tactile perception, attributed to the gradient microstructure and the interlocking collagen fiber on the skin's surface. However, challenges persist in achieving simultaneous enhancement of multiple functionalities in artificial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-07, Vol.34 (27), p.n/a
Hauptverfasser: Zhou, Shuai, Han, Tian‐Hang, Ding, Lang, Ru, Enqi, Zhang, Chen, Zhang, Yu‐Jia, Yi, Chen‐Xin, Sun, Tian‐Shu, Luo, Zhen‐Yang, Liu, Yao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 27
container_start_page
container_title Advanced functional materials
container_volume 34
creator Zhou, Shuai
Han, Tian‐Hang
Ding, Lang
Ru, Enqi
Zhang, Chen
Zhang, Yu‐Jia
Yi, Chen‐Xin
Sun, Tian‐Shu
Luo, Zhen‐Yang
Liu, Yao
description Human fingers possess stable high sensitivity and a wide range of tactile perception, attributed to the gradient microstructure and the interlocking collagen fiber on the skin's surface. However, challenges persist in achieving simultaneous enhancement of multiple functionalities in artificial skin. Inspired by the unique structure of the skin, a two‐step process involving ion diffusion‐induced and strong‐weak topological crosslinking is synergistically employed to fabricate a bilayer gradient hydrogel. Zn2+ initially diffuses to induce the formation of weak bonds, imparting elasticity. Subsequently, Fe3+/Zn2+ diffusion constructs a strong‐weak topologically crosslinked network, enhancing the toughness of the gel while reducing the brittleness associated with robust bonds. Due to its distinctive design, the gel employs an adaptive energy dissipation strategy subjected to large and small stress, ensuring high sensitivity (3.31 kPa−1, 0–2 kPa), wide sensing range (0.4–40.6 kPa), and exceptional stability (500 cycles). This flexible approach enables programmable design in three dimensions, including ion diffusion type, direction, and shape. This gel can detect the gentle brushing of feathers and human body movements. It utilizes significant differences generated by magnitudes of stress to perform binary information encryption. This study introduces a novel strategy for preparing skin‐like gels, offering promising potential for expanding their applications in complex scenarios. The flexible network induced by weak Zn2+ diffusion undergoes simultaneous sacrifice and reconstruction when subjected to loading, endowing a bilayer gradient gel with high sensitivity. Through strong‐weak Fe3+/Zn2+ dual‐ion diffusion, a topological cross‐linked network is constructed, and the robust coordination imparts a wide detection range. Weak bonds, serving as a buffer, alleviate hysteresis induced by the fracture of brittle bonds.
doi_str_mv 10.1002/adfm.202313012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3075033816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3075033816</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2722-423314676e73a23c8d220ca17710404404895cb74b00296cb17d296b64c749b63</originalsourceid><addsrcrecordid>eNqFUE1Lw0AQXUTBWr16XvCcul_NJsda7QdUFKzgLWw2m3Rruls3qSXgwZ_gb_SXuGmlHoWBN8O8N8N7AFxi1MMIkWuR5aseQYRiijA5Ah0c4jCgiETHhx6_nIKzqloihDmnrAM-bnQpGuXg2IlMK1PDSZM5W6gSbnW9gHO7tqUttBQlHDpbVaU2r9oUMLcOTnSx-P78elKm0rV-13UD50LWulTwUTmp1rW2BgqTwanx_JXYzXdGuma3OgcnuSgrdfGLXfA8upsPJ8HsYTwdDmaBJJyQgBFKMQt5qDgVhMooIwRJ4R1gxBDzFcV9mXKW-hjiUKaYZx7TkEnO4jSkXXC1v7t29m2jqjpZ2o0z_mVCEe8jSiPcsnp7lmx9OpUna6dXwjUJRkmbcNImnBwS9oJ4L9h6x80_7GRwO7r_0_4AD5WBHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075033816</pqid></control><display><type>article</type><title>Bilayer Gradient Hydrogel with Topological Crosslinking for High‐Sensitivity Tactile Perception and Information Encryption</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhou, Shuai ; Han, Tian‐Hang ; Ding, Lang ; Ru, Enqi ; Zhang, Chen ; Zhang, Yu‐Jia ; Yi, Chen‐Xin ; Sun, Tian‐Shu ; Luo, Zhen‐Yang ; Liu, Yao</creator><creatorcontrib>Zhou, Shuai ; Han, Tian‐Hang ; Ding, Lang ; Ru, Enqi ; Zhang, Chen ; Zhang, Yu‐Jia ; Yi, Chen‐Xin ; Sun, Tian‐Shu ; Luo, Zhen‐Yang ; Liu, Yao</creatorcontrib><description>Human fingers possess stable high sensitivity and a wide range of tactile perception, attributed to the gradient microstructure and the interlocking collagen fiber on the skin's surface. However, challenges persist in achieving simultaneous enhancement of multiple functionalities in artificial skin. Inspired by the unique structure of the skin, a two‐step process involving ion diffusion‐induced and strong‐weak topological crosslinking is synergistically employed to fabricate a bilayer gradient hydrogel. Zn2+ initially diffuses to induce the formation of weak bonds, imparting elasticity. Subsequently, Fe3+/Zn2+ diffusion constructs a strong‐weak topologically crosslinked network, enhancing the toughness of the gel while reducing the brittleness associated with robust bonds. Due to its distinctive design, the gel employs an adaptive energy dissipation strategy subjected to large and small stress, ensuring high sensitivity (3.31 kPa−1, 0–2 kPa), wide sensing range (0.4–40.6 kPa), and exceptional stability (500 cycles). This flexible approach enables programmable design in three dimensions, including ion diffusion type, direction, and shape. This gel can detect the gentle brushing of feathers and human body movements. It utilizes significant differences generated by magnitudes of stress to perform binary information encryption. This study introduces a novel strategy for preparing skin‐like gels, offering promising potential for expanding their applications in complex scenarios. The flexible network induced by weak Zn2+ diffusion undergoes simultaneous sacrifice and reconstruction when subjected to loading, endowing a bilayer gradient gel with high sensitivity. Through strong‐weak Fe3+/Zn2+ dual‐ion diffusion, a topological cross‐linked network is constructed, and the robust coordination imparts a wide detection range. Weak bonds, serving as a buffer, alleviate hysteresis induced by the fracture of brittle bonds.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202313012</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>adaptive energy dissipation ; Bonding strength ; Crosslinking ; Energy dissipation ; Hydrogels ; information encryption ; Ion diffusion ; ion diffusion‐induced ; Perception ; Sensitivity ; Skin ; Tactile discrimination ; tactile perception ; topological crosslinking ; Topology</subject><ispartof>Advanced functional materials, 2024-07, Vol.34 (27), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2722-423314676e73a23c8d220ca17710404404895cb74b00296cb17d296b64c749b63</cites><orcidid>0000-0002-7646-1888</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202313012$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202313012$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zhou, Shuai</creatorcontrib><creatorcontrib>Han, Tian‐Hang</creatorcontrib><creatorcontrib>Ding, Lang</creatorcontrib><creatorcontrib>Ru, Enqi</creatorcontrib><creatorcontrib>Zhang, Chen</creatorcontrib><creatorcontrib>Zhang, Yu‐Jia</creatorcontrib><creatorcontrib>Yi, Chen‐Xin</creatorcontrib><creatorcontrib>Sun, Tian‐Shu</creatorcontrib><creatorcontrib>Luo, Zhen‐Yang</creatorcontrib><creatorcontrib>Liu, Yao</creatorcontrib><title>Bilayer Gradient Hydrogel with Topological Crosslinking for High‐Sensitivity Tactile Perception and Information Encryption</title><title>Advanced functional materials</title><description>Human fingers possess stable high sensitivity and a wide range of tactile perception, attributed to the gradient microstructure and the interlocking collagen fiber on the skin's surface. However, challenges persist in achieving simultaneous enhancement of multiple functionalities in artificial skin. Inspired by the unique structure of the skin, a two‐step process involving ion diffusion‐induced and strong‐weak topological crosslinking is synergistically employed to fabricate a bilayer gradient hydrogel. Zn2+ initially diffuses to induce the formation of weak bonds, imparting elasticity. Subsequently, Fe3+/Zn2+ diffusion constructs a strong‐weak topologically crosslinked network, enhancing the toughness of the gel while reducing the brittleness associated with robust bonds. Due to its distinctive design, the gel employs an adaptive energy dissipation strategy subjected to large and small stress, ensuring high sensitivity (3.31 kPa−1, 0–2 kPa), wide sensing range (0.4–40.6 kPa), and exceptional stability (500 cycles). This flexible approach enables programmable design in three dimensions, including ion diffusion type, direction, and shape. This gel can detect the gentle brushing of feathers and human body movements. It utilizes significant differences generated by magnitudes of stress to perform binary information encryption. This study introduces a novel strategy for preparing skin‐like gels, offering promising potential for expanding their applications in complex scenarios. The flexible network induced by weak Zn2+ diffusion undergoes simultaneous sacrifice and reconstruction when subjected to loading, endowing a bilayer gradient gel with high sensitivity. Through strong‐weak Fe3+/Zn2+ dual‐ion diffusion, a topological cross‐linked network is constructed, and the robust coordination imparts a wide detection range. Weak bonds, serving as a buffer, alleviate hysteresis induced by the fracture of brittle bonds.</description><subject>adaptive energy dissipation</subject><subject>Bonding strength</subject><subject>Crosslinking</subject><subject>Energy dissipation</subject><subject>Hydrogels</subject><subject>information encryption</subject><subject>Ion diffusion</subject><subject>ion diffusion‐induced</subject><subject>Perception</subject><subject>Sensitivity</subject><subject>Skin</subject><subject>Tactile discrimination</subject><subject>tactile perception</subject><subject>topological crosslinking</subject><subject>Topology</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFUE1Lw0AQXUTBWr16XvCcul_NJsda7QdUFKzgLWw2m3Rruls3qSXgwZ_gb_SXuGmlHoWBN8O8N8N7AFxi1MMIkWuR5aseQYRiijA5Ah0c4jCgiETHhx6_nIKzqloihDmnrAM-bnQpGuXg2IlMK1PDSZM5W6gSbnW9gHO7tqUttBQlHDpbVaU2r9oUMLcOTnSx-P78elKm0rV-13UD50LWulTwUTmp1rW2BgqTwanx_JXYzXdGuma3OgcnuSgrdfGLXfA8upsPJ8HsYTwdDmaBJJyQgBFKMQt5qDgVhMooIwRJ4R1gxBDzFcV9mXKW-hjiUKaYZx7TkEnO4jSkXXC1v7t29m2jqjpZ2o0z_mVCEe8jSiPcsnp7lmx9OpUna6dXwjUJRkmbcNImnBwS9oJ4L9h6x80_7GRwO7r_0_4AD5WBHA</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Zhou, Shuai</creator><creator>Han, Tian‐Hang</creator><creator>Ding, Lang</creator><creator>Ru, Enqi</creator><creator>Zhang, Chen</creator><creator>Zhang, Yu‐Jia</creator><creator>Yi, Chen‐Xin</creator><creator>Sun, Tian‐Shu</creator><creator>Luo, Zhen‐Yang</creator><creator>Liu, Yao</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7646-1888</orcidid></search><sort><creationdate>20240701</creationdate><title>Bilayer Gradient Hydrogel with Topological Crosslinking for High‐Sensitivity Tactile Perception and Information Encryption</title><author>Zhou, Shuai ; Han, Tian‐Hang ; Ding, Lang ; Ru, Enqi ; Zhang, Chen ; Zhang, Yu‐Jia ; Yi, Chen‐Xin ; Sun, Tian‐Shu ; Luo, Zhen‐Yang ; Liu, Yao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2722-423314676e73a23c8d220ca17710404404895cb74b00296cb17d296b64c749b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>adaptive energy dissipation</topic><topic>Bonding strength</topic><topic>Crosslinking</topic><topic>Energy dissipation</topic><topic>Hydrogels</topic><topic>information encryption</topic><topic>Ion diffusion</topic><topic>ion diffusion‐induced</topic><topic>Perception</topic><topic>Sensitivity</topic><topic>Skin</topic><topic>Tactile discrimination</topic><topic>tactile perception</topic><topic>topological crosslinking</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Shuai</creatorcontrib><creatorcontrib>Han, Tian‐Hang</creatorcontrib><creatorcontrib>Ding, Lang</creatorcontrib><creatorcontrib>Ru, Enqi</creatorcontrib><creatorcontrib>Zhang, Chen</creatorcontrib><creatorcontrib>Zhang, Yu‐Jia</creatorcontrib><creatorcontrib>Yi, Chen‐Xin</creatorcontrib><creatorcontrib>Sun, Tian‐Shu</creatorcontrib><creatorcontrib>Luo, Zhen‐Yang</creatorcontrib><creatorcontrib>Liu, Yao</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Shuai</au><au>Han, Tian‐Hang</au><au>Ding, Lang</au><au>Ru, Enqi</au><au>Zhang, Chen</au><au>Zhang, Yu‐Jia</au><au>Yi, Chen‐Xin</au><au>Sun, Tian‐Shu</au><au>Luo, Zhen‐Yang</au><au>Liu, Yao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bilayer Gradient Hydrogel with Topological Crosslinking for High‐Sensitivity Tactile Perception and Information Encryption</atitle><jtitle>Advanced functional materials</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>34</volume><issue>27</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Human fingers possess stable high sensitivity and a wide range of tactile perception, attributed to the gradient microstructure and the interlocking collagen fiber on the skin's surface. However, challenges persist in achieving simultaneous enhancement of multiple functionalities in artificial skin. Inspired by the unique structure of the skin, a two‐step process involving ion diffusion‐induced and strong‐weak topological crosslinking is synergistically employed to fabricate a bilayer gradient hydrogel. Zn2+ initially diffuses to induce the formation of weak bonds, imparting elasticity. Subsequently, Fe3+/Zn2+ diffusion constructs a strong‐weak topologically crosslinked network, enhancing the toughness of the gel while reducing the brittleness associated with robust bonds. Due to its distinctive design, the gel employs an adaptive energy dissipation strategy subjected to large and small stress, ensuring high sensitivity (3.31 kPa−1, 0–2 kPa), wide sensing range (0.4–40.6 kPa), and exceptional stability (500 cycles). This flexible approach enables programmable design in three dimensions, including ion diffusion type, direction, and shape. This gel can detect the gentle brushing of feathers and human body movements. It utilizes significant differences generated by magnitudes of stress to perform binary information encryption. This study introduces a novel strategy for preparing skin‐like gels, offering promising potential for expanding their applications in complex scenarios. The flexible network induced by weak Zn2+ diffusion undergoes simultaneous sacrifice and reconstruction when subjected to loading, endowing a bilayer gradient gel with high sensitivity. Through strong‐weak Fe3+/Zn2+ dual‐ion diffusion, a topological cross‐linked network is constructed, and the robust coordination imparts a wide detection range. Weak bonds, serving as a buffer, alleviate hysteresis induced by the fracture of brittle bonds.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202313012</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-7646-1888</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-07, Vol.34 (27), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_3075033816
source Wiley Online Library Journals Frontfile Complete
subjects adaptive energy dissipation
Bonding strength
Crosslinking
Energy dissipation
Hydrogels
information encryption
Ion diffusion
ion diffusion‐induced
Perception
Sensitivity
Skin
Tactile discrimination
tactile perception
topological crosslinking
Topology
title Bilayer Gradient Hydrogel with Topological Crosslinking for High‐Sensitivity Tactile Perception and Information Encryption
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T04%3A16%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bilayer%20Gradient%20Hydrogel%20with%20Topological%20Crosslinking%20for%20High%E2%80%90Sensitivity%20Tactile%20Perception%20and%20Information%20Encryption&rft.jtitle=Advanced%20functional%20materials&rft.au=Zhou,%20Shuai&rft.date=2024-07-01&rft.volume=34&rft.issue=27&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202313012&rft_dat=%3Cproquest_cross%3E3075033816%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3075033816&rft_id=info:pmid/&rfr_iscdi=true