Autonomous flight strategy of an unmanned aerial vehicle with multimodal information for autonomous inspection of overhead transmission facilities
This study proposes an innovative method for achieving autonomous flight to inspect overhead transmission facilities. The proposed method not only integrates multimodal information from novel sensors but also addresses three essential aspects to overcome the existing limitations in autonomous flight...
Gespeichert in:
Veröffentlicht in: | Computer-aided civil and infrastructure engineering 2024-07, Vol.39 (14), p.2159-2186 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2186 |
---|---|
container_issue | 14 |
container_start_page | 2159 |
container_title | Computer-aided civil and infrastructure engineering |
container_volume | 39 |
creator | Jeon, Munsu Moon, Joonhyeok Jeong, Siheon Oh, Ki‐Yong |
description | This study proposes an innovative method for achieving autonomous flight to inspect overhead transmission facilities. The proposed method not only integrates multimodal information from novel sensors but also addresses three essential aspects to overcome the existing limitations in autonomous flights of an unmanned aerial vehicle (UAV). First, a novel deep neural network architecture titled the rotational bounding box with a multi‐level feature pyramid transformer is introduced for accurate object detection. Second, a safe autonomous method for the transmission tower approach is proposed by using multimodal information from an optical camera and 3D light detection and ranging. Third, a simple yet accurate control strategy is proposed for tracking transmission lines without necessitating gimbal control because it keeps the UAV's altitude in sync with that of the transmission lines. Systematic analyses conducted in both virtual and real‐world environments confirm the effectiveness of the proposed method. The proposed method not only enhances the performance of autonomous flight but also provides a safe operating platform for inspection personnel. |
doi_str_mv | 10.1111/mice.13188 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3075006295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3075006295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2968-801bee09a861434cacd4c919f305dbc259312db5475b172c86b9260e5cb27563</originalsourceid><addsrcrecordid>eNp9kMFOwzAMhisEEmNw4QkicUPqSNombY7TNGDSEJfdqzR110xtMpJ0016DJyZbkbjhiy3782_5j6JHgmckxEuvJMxISoriKpqQjOVxwVh-HWrM05izIr-N7pzb4RBZlk6i7_ngjTa9GRxqOrVtPXLeCg_bEzINEhoNuhdaQ40EWCU6dIBWyQ7QUfkW9UPnVW_q0Fe6MbYXXhmNQoXEn7DSbg_yMgma5gC2BVGjcEe7Xjl3WRFSdcorcPfRTSM6Bw-_eRptXpebxXu8_nxbLebrWCbhkbjApALAXBSMZGkmhawzyQlvUkzrSiaUpySpK5rltCJ5IgtW8YRhoLJKcsrSafQ0yu6t-RrA-XJnBqvDxTLFOcWYJZwG6nmkpDXOWWjKvVW9sKeS4PJseXm2vLxYHmAywkfVwekfsvxYLZbjzg_FhYe6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075006295</pqid></control><display><type>article</type><title>Autonomous flight strategy of an unmanned aerial vehicle with multimodal information for autonomous inspection of overhead transmission facilities</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jeon, Munsu ; Moon, Joonhyeok ; Jeong, Siheon ; Oh, Ki‐Yong</creator><creatorcontrib>Jeon, Munsu ; Moon, Joonhyeok ; Jeong, Siheon ; Oh, Ki‐Yong</creatorcontrib><description>This study proposes an innovative method for achieving autonomous flight to inspect overhead transmission facilities. The proposed method not only integrates multimodal information from novel sensors but also addresses three essential aspects to overcome the existing limitations in autonomous flights of an unmanned aerial vehicle (UAV). First, a novel deep neural network architecture titled the rotational bounding box with a multi‐level feature pyramid transformer is introduced for accurate object detection. Second, a safe autonomous method for the transmission tower approach is proposed by using multimodal information from an optical camera and 3D light detection and ranging. Third, a simple yet accurate control strategy is proposed for tracking transmission lines without necessitating gimbal control because it keeps the UAV's altitude in sync with that of the transmission lines. Systematic analyses conducted in both virtual and real‐world environments confirm the effectiveness of the proposed method. The proposed method not only enhances the performance of autonomous flight but also provides a safe operating platform for inspection personnel.</description><identifier>ISSN: 1093-9687</identifier><identifier>EISSN: 1467-8667</identifier><identifier>DOI: 10.1111/mice.13188</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Artificial neural networks ; Effectiveness ; Flight ; Inspection ; Lidar ; Object recognition ; Transmission lines ; Transmission towers ; Unmanned aerial vehicles</subject><ispartof>Computer-aided civil and infrastructure engineering, 2024-07, Vol.39 (14), p.2159-2186</ispartof><rights>2024 The Authors. published by Wiley Periodicals LLC on behalf of Editor.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2968-801bee09a861434cacd4c919f305dbc259312db5475b172c86b9260e5cb27563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmice.13188$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmice.13188$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Jeon, Munsu</creatorcontrib><creatorcontrib>Moon, Joonhyeok</creatorcontrib><creatorcontrib>Jeong, Siheon</creatorcontrib><creatorcontrib>Oh, Ki‐Yong</creatorcontrib><title>Autonomous flight strategy of an unmanned aerial vehicle with multimodal information for autonomous inspection of overhead transmission facilities</title><title>Computer-aided civil and infrastructure engineering</title><description>This study proposes an innovative method for achieving autonomous flight to inspect overhead transmission facilities. The proposed method not only integrates multimodal information from novel sensors but also addresses three essential aspects to overcome the existing limitations in autonomous flights of an unmanned aerial vehicle (UAV). First, a novel deep neural network architecture titled the rotational bounding box with a multi‐level feature pyramid transformer is introduced for accurate object detection. Second, a safe autonomous method for the transmission tower approach is proposed by using multimodal information from an optical camera and 3D light detection and ranging. Third, a simple yet accurate control strategy is proposed for tracking transmission lines without necessitating gimbal control because it keeps the UAV's altitude in sync with that of the transmission lines. Systematic analyses conducted in both virtual and real‐world environments confirm the effectiveness of the proposed method. The proposed method not only enhances the performance of autonomous flight but also provides a safe operating platform for inspection personnel.</description><subject>Artificial neural networks</subject><subject>Effectiveness</subject><subject>Flight</subject><subject>Inspection</subject><subject>Lidar</subject><subject>Object recognition</subject><subject>Transmission lines</subject><subject>Transmission towers</subject><subject>Unmanned aerial vehicles</subject><issn>1093-9687</issn><issn>1467-8667</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kMFOwzAMhisEEmNw4QkicUPqSNombY7TNGDSEJfdqzR110xtMpJ0016DJyZbkbjhiy3782_5j6JHgmckxEuvJMxISoriKpqQjOVxwVh-HWrM05izIr-N7pzb4RBZlk6i7_ngjTa9GRxqOrVtPXLeCg_bEzINEhoNuhdaQ40EWCU6dIBWyQ7QUfkW9UPnVW_q0Fe6MbYXXhmNQoXEn7DSbg_yMgma5gC2BVGjcEe7Xjl3WRFSdcorcPfRTSM6Bw-_eRptXpebxXu8_nxbLebrWCbhkbjApALAXBSMZGkmhawzyQlvUkzrSiaUpySpK5rltCJ5IgtW8YRhoLJKcsrSafQ0yu6t-RrA-XJnBqvDxTLFOcWYJZwG6nmkpDXOWWjKvVW9sKeS4PJseXm2vLxYHmAywkfVwekfsvxYLZbjzg_FhYe6</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Jeon, Munsu</creator><creator>Moon, Joonhyeok</creator><creator>Jeong, Siheon</creator><creator>Oh, Ki‐Yong</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20240701</creationdate><title>Autonomous flight strategy of an unmanned aerial vehicle with multimodal information for autonomous inspection of overhead transmission facilities</title><author>Jeon, Munsu ; Moon, Joonhyeok ; Jeong, Siheon ; Oh, Ki‐Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2968-801bee09a861434cacd4c919f305dbc259312db5475b172c86b9260e5cb27563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Effectiveness</topic><topic>Flight</topic><topic>Inspection</topic><topic>Lidar</topic><topic>Object recognition</topic><topic>Transmission lines</topic><topic>Transmission towers</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeon, Munsu</creatorcontrib><creatorcontrib>Moon, Joonhyeok</creatorcontrib><creatorcontrib>Jeong, Siheon</creatorcontrib><creatorcontrib>Oh, Ki‐Yong</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer-aided civil and infrastructure engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeon, Munsu</au><au>Moon, Joonhyeok</au><au>Jeong, Siheon</au><au>Oh, Ki‐Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autonomous flight strategy of an unmanned aerial vehicle with multimodal information for autonomous inspection of overhead transmission facilities</atitle><jtitle>Computer-aided civil and infrastructure engineering</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>39</volume><issue>14</issue><spage>2159</spage><epage>2186</epage><pages>2159-2186</pages><issn>1093-9687</issn><eissn>1467-8667</eissn><abstract>This study proposes an innovative method for achieving autonomous flight to inspect overhead transmission facilities. The proposed method not only integrates multimodal information from novel sensors but also addresses three essential aspects to overcome the existing limitations in autonomous flights of an unmanned aerial vehicle (UAV). First, a novel deep neural network architecture titled the rotational bounding box with a multi‐level feature pyramid transformer is introduced for accurate object detection. Second, a safe autonomous method for the transmission tower approach is proposed by using multimodal information from an optical camera and 3D light detection and ranging. Third, a simple yet accurate control strategy is proposed for tracking transmission lines without necessitating gimbal control because it keeps the UAV's altitude in sync with that of the transmission lines. Systematic analyses conducted in both virtual and real‐world environments confirm the effectiveness of the proposed method. The proposed method not only enhances the performance of autonomous flight but also provides a safe operating platform for inspection personnel.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/mice.13188</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1093-9687 |
ispartof | Computer-aided civil and infrastructure engineering, 2024-07, Vol.39 (14), p.2159-2186 |
issn | 1093-9687 1467-8667 |
language | eng |
recordid | cdi_proquest_journals_3075006295 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Artificial neural networks Effectiveness Flight Inspection Lidar Object recognition Transmission lines Transmission towers Unmanned aerial vehicles |
title | Autonomous flight strategy of an unmanned aerial vehicle with multimodal information for autonomous inspection of overhead transmission facilities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A55%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autonomous%20flight%20strategy%20of%20an%20unmanned%20aerial%20vehicle%20with%20multimodal%20information%20for%20autonomous%20inspection%20of%20overhead%20transmission%20facilities&rft.jtitle=Computer-aided%20civil%20and%20infrastructure%20engineering&rft.au=Jeon,%20Munsu&rft.date=2024-07-01&rft.volume=39&rft.issue=14&rft.spage=2159&rft.epage=2186&rft.pages=2159-2186&rft.issn=1093-9687&rft.eissn=1467-8667&rft_id=info:doi/10.1111/mice.13188&rft_dat=%3Cproquest_cross%3E3075006295%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3075006295&rft_id=info:pmid/&rfr_iscdi=true |