Autonomous flight strategy of an unmanned aerial vehicle with multimodal information for autonomous inspection of overhead transmission facilities

This study proposes an innovative method for achieving autonomous flight to inspect overhead transmission facilities. The proposed method not only integrates multimodal information from novel sensors but also addresses three essential aspects to overcome the existing limitations in autonomous flight...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer-aided civil and infrastructure engineering 2024-07, Vol.39 (14), p.2159-2186
Hauptverfasser: Jeon, Munsu, Moon, Joonhyeok, Jeong, Siheon, Oh, Ki‐Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2186
container_issue 14
container_start_page 2159
container_title Computer-aided civil and infrastructure engineering
container_volume 39
creator Jeon, Munsu
Moon, Joonhyeok
Jeong, Siheon
Oh, Ki‐Yong
description This study proposes an innovative method for achieving autonomous flight to inspect overhead transmission facilities. The proposed method not only integrates multimodal information from novel sensors but also addresses three essential aspects to overcome the existing limitations in autonomous flights of an unmanned aerial vehicle (UAV). First, a novel deep neural network architecture titled the rotational bounding box with a multi‐level feature pyramid transformer is introduced for accurate object detection. Second, a safe autonomous method for the transmission tower approach is proposed by using multimodal information from an optical camera and 3D light detection and ranging. Third, a simple yet accurate control strategy is proposed for tracking transmission lines without necessitating gimbal control because it keeps the UAV's altitude in sync with that of the transmission lines. Systematic analyses conducted in both virtual and real‐world environments confirm the effectiveness of the proposed method. The proposed method not only enhances the performance of autonomous flight but also provides a safe operating platform for inspection personnel.
doi_str_mv 10.1111/mice.13188
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3075006295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3075006295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2968-801bee09a861434cacd4c919f305dbc259312db5475b172c86b9260e5cb27563</originalsourceid><addsrcrecordid>eNp9kMFOwzAMhisEEmNw4QkicUPqSNombY7TNGDSEJfdqzR110xtMpJ0016DJyZbkbjhiy3782_5j6JHgmckxEuvJMxISoriKpqQjOVxwVh-HWrM05izIr-N7pzb4RBZlk6i7_ngjTa9GRxqOrVtPXLeCg_bEzINEhoNuhdaQ40EWCU6dIBWyQ7QUfkW9UPnVW_q0Fe6MbYXXhmNQoXEn7DSbg_yMgma5gC2BVGjcEe7Xjl3WRFSdcorcPfRTSM6Bw-_eRptXpebxXu8_nxbLebrWCbhkbjApALAXBSMZGkmhawzyQlvUkzrSiaUpySpK5rltCJ5IgtW8YRhoLJKcsrSafQ0yu6t-RrA-XJnBqvDxTLFOcWYJZwG6nmkpDXOWWjKvVW9sKeS4PJseXm2vLxYHmAywkfVwekfsvxYLZbjzg_FhYe6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075006295</pqid></control><display><type>article</type><title>Autonomous flight strategy of an unmanned aerial vehicle with multimodal information for autonomous inspection of overhead transmission facilities</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jeon, Munsu ; Moon, Joonhyeok ; Jeong, Siheon ; Oh, Ki‐Yong</creator><creatorcontrib>Jeon, Munsu ; Moon, Joonhyeok ; Jeong, Siheon ; Oh, Ki‐Yong</creatorcontrib><description>This study proposes an innovative method for achieving autonomous flight to inspect overhead transmission facilities. The proposed method not only integrates multimodal information from novel sensors but also addresses three essential aspects to overcome the existing limitations in autonomous flights of an unmanned aerial vehicle (UAV). First, a novel deep neural network architecture titled the rotational bounding box with a multi‐level feature pyramid transformer is introduced for accurate object detection. Second, a safe autonomous method for the transmission tower approach is proposed by using multimodal information from an optical camera and 3D light detection and ranging. Third, a simple yet accurate control strategy is proposed for tracking transmission lines without necessitating gimbal control because it keeps the UAV's altitude in sync with that of the transmission lines. Systematic analyses conducted in both virtual and real‐world environments confirm the effectiveness of the proposed method. The proposed method not only enhances the performance of autonomous flight but also provides a safe operating platform for inspection personnel.</description><identifier>ISSN: 1093-9687</identifier><identifier>EISSN: 1467-8667</identifier><identifier>DOI: 10.1111/mice.13188</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Artificial neural networks ; Effectiveness ; Flight ; Inspection ; Lidar ; Object recognition ; Transmission lines ; Transmission towers ; Unmanned aerial vehicles</subject><ispartof>Computer-aided civil and infrastructure engineering, 2024-07, Vol.39 (14), p.2159-2186</ispartof><rights>2024 The Authors. published by Wiley Periodicals LLC on behalf of Editor.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2968-801bee09a861434cacd4c919f305dbc259312db5475b172c86b9260e5cb27563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmice.13188$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmice.13188$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Jeon, Munsu</creatorcontrib><creatorcontrib>Moon, Joonhyeok</creatorcontrib><creatorcontrib>Jeong, Siheon</creatorcontrib><creatorcontrib>Oh, Ki‐Yong</creatorcontrib><title>Autonomous flight strategy of an unmanned aerial vehicle with multimodal information for autonomous inspection of overhead transmission facilities</title><title>Computer-aided civil and infrastructure engineering</title><description>This study proposes an innovative method for achieving autonomous flight to inspect overhead transmission facilities. The proposed method not only integrates multimodal information from novel sensors but also addresses three essential aspects to overcome the existing limitations in autonomous flights of an unmanned aerial vehicle (UAV). First, a novel deep neural network architecture titled the rotational bounding box with a multi‐level feature pyramid transformer is introduced for accurate object detection. Second, a safe autonomous method for the transmission tower approach is proposed by using multimodal information from an optical camera and 3D light detection and ranging. Third, a simple yet accurate control strategy is proposed for tracking transmission lines without necessitating gimbal control because it keeps the UAV's altitude in sync with that of the transmission lines. Systematic analyses conducted in both virtual and real‐world environments confirm the effectiveness of the proposed method. The proposed method not only enhances the performance of autonomous flight but also provides a safe operating platform for inspection personnel.</description><subject>Artificial neural networks</subject><subject>Effectiveness</subject><subject>Flight</subject><subject>Inspection</subject><subject>Lidar</subject><subject>Object recognition</subject><subject>Transmission lines</subject><subject>Transmission towers</subject><subject>Unmanned aerial vehicles</subject><issn>1093-9687</issn><issn>1467-8667</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kMFOwzAMhisEEmNw4QkicUPqSNombY7TNGDSEJfdqzR110xtMpJ0016DJyZbkbjhiy3782_5j6JHgmckxEuvJMxISoriKpqQjOVxwVh-HWrM05izIr-N7pzb4RBZlk6i7_ngjTa9GRxqOrVtPXLeCg_bEzINEhoNuhdaQ40EWCU6dIBWyQ7QUfkW9UPnVW_q0Fe6MbYXXhmNQoXEn7DSbg_yMgma5gC2BVGjcEe7Xjl3WRFSdcorcPfRTSM6Bw-_eRptXpebxXu8_nxbLebrWCbhkbjApALAXBSMZGkmhawzyQlvUkzrSiaUpySpK5rltCJ5IgtW8YRhoLJKcsrSafQ0yu6t-RrA-XJnBqvDxTLFOcWYJZwG6nmkpDXOWWjKvVW9sKeS4PJseXm2vLxYHmAywkfVwekfsvxYLZbjzg_FhYe6</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Jeon, Munsu</creator><creator>Moon, Joonhyeok</creator><creator>Jeong, Siheon</creator><creator>Oh, Ki‐Yong</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20240701</creationdate><title>Autonomous flight strategy of an unmanned aerial vehicle with multimodal information for autonomous inspection of overhead transmission facilities</title><author>Jeon, Munsu ; Moon, Joonhyeok ; Jeong, Siheon ; Oh, Ki‐Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2968-801bee09a861434cacd4c919f305dbc259312db5475b172c86b9260e5cb27563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Effectiveness</topic><topic>Flight</topic><topic>Inspection</topic><topic>Lidar</topic><topic>Object recognition</topic><topic>Transmission lines</topic><topic>Transmission towers</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeon, Munsu</creatorcontrib><creatorcontrib>Moon, Joonhyeok</creatorcontrib><creatorcontrib>Jeong, Siheon</creatorcontrib><creatorcontrib>Oh, Ki‐Yong</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer-aided civil and infrastructure engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeon, Munsu</au><au>Moon, Joonhyeok</au><au>Jeong, Siheon</au><au>Oh, Ki‐Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autonomous flight strategy of an unmanned aerial vehicle with multimodal information for autonomous inspection of overhead transmission facilities</atitle><jtitle>Computer-aided civil and infrastructure engineering</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>39</volume><issue>14</issue><spage>2159</spage><epage>2186</epage><pages>2159-2186</pages><issn>1093-9687</issn><eissn>1467-8667</eissn><abstract>This study proposes an innovative method for achieving autonomous flight to inspect overhead transmission facilities. The proposed method not only integrates multimodal information from novel sensors but also addresses three essential aspects to overcome the existing limitations in autonomous flights of an unmanned aerial vehicle (UAV). First, a novel deep neural network architecture titled the rotational bounding box with a multi‐level feature pyramid transformer is introduced for accurate object detection. Second, a safe autonomous method for the transmission tower approach is proposed by using multimodal information from an optical camera and 3D light detection and ranging. Third, a simple yet accurate control strategy is proposed for tracking transmission lines without necessitating gimbal control because it keeps the UAV's altitude in sync with that of the transmission lines. Systematic analyses conducted in both virtual and real‐world environments confirm the effectiveness of the proposed method. The proposed method not only enhances the performance of autonomous flight but also provides a safe operating platform for inspection personnel.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/mice.13188</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1093-9687
ispartof Computer-aided civil and infrastructure engineering, 2024-07, Vol.39 (14), p.2159-2186
issn 1093-9687
1467-8667
language eng
recordid cdi_proquest_journals_3075006295
source Wiley Online Library Journals Frontfile Complete
subjects Artificial neural networks
Effectiveness
Flight
Inspection
Lidar
Object recognition
Transmission lines
Transmission towers
Unmanned aerial vehicles
title Autonomous flight strategy of an unmanned aerial vehicle with multimodal information for autonomous inspection of overhead transmission facilities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A55%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autonomous%20flight%20strategy%20of%20an%20unmanned%20aerial%20vehicle%20with%20multimodal%20information%20for%20autonomous%20inspection%20of%20overhead%20transmission%20facilities&rft.jtitle=Computer-aided%20civil%20and%20infrastructure%20engineering&rft.au=Jeon,%20Munsu&rft.date=2024-07-01&rft.volume=39&rft.issue=14&rft.spage=2159&rft.epage=2186&rft.pages=2159-2186&rft.issn=1093-9687&rft.eissn=1467-8667&rft_id=info:doi/10.1111/mice.13188&rft_dat=%3Cproquest_cross%3E3075006295%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3075006295&rft_id=info:pmid/&rfr_iscdi=true