Seasonal prediction of extreme high-temperature days over the Yangtze River basin
Extreme high temperatures occur frequently over the densely populated Yangtze River basin (YRB) in China during summer, significantly impacting the local economic development and ecological system. However, accurate prediction of extreme high-temperature days in this region remains a challenge. Unfo...
Gespeichert in:
Veröffentlicht in: | Science China. Earth sciences 2024-07, Vol.67 (7), p.2137-2147 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2147 |
---|---|
container_issue | 7 |
container_start_page | 2137 |
container_title | Science China. Earth sciences |
container_volume | 67 |
creator | Pan, Shifeng Yin, Zhicong Duan, Mingkeng Han, Tingting Fan, Yi Huang, Yangyang Wang, Huijun |
description | Extreme high temperatures occur frequently over the densely populated Yangtze River basin (YRB) in China during summer, significantly impacting the local economic development and ecological system. However, accurate prediction of extreme high-temperature days in this region remains a challenge. Unfortunately, the Climate Forecast System Version 2 (CFSv2) exhibits poor performance in this regard. Thus, based on the interannual increment approach, we develop a hybrid seasonal prediction model over the YRB (HM
YRB
) to improve the prediction of extreme high-temperature days in summer.The HM
YRB
relies on the following four predictors: the observed preceding April–May snowmelt in north western Europe; the snow depth in March over the central Siberian Plateau; the CFSv2-forecasted concurrent summer sea surface temperatures around the Maritime Continent; and the 200-hPa geopotential height over the Tibetan Plateau. The HM
YRB
indicates good capabilities in predicting the interannual variability and trend of extreme high-temperature days, with a markable correlation coefficient of 0.58 and a percentage of the same sign (PSS) of 76% during 1983–2015 in the one-year-out cross-validation. Additionally, the HM
YRB
maintains high PSS skill (86%) and robustness in the independent prediction period (2016–2022). Furthermore, the HM
YRB
shows a good performance for years with high occurrence of extreme high-temperature days, with a hit ratio of 40%. These predictors used in HM
YRB
are beneficial in terms of the prediction skill for the average daily maximum temperature in summer over the YRB, albeit with biases existing in the magnitude. Our study provides promising insights into the prediction of 2022-like hot extremes over the YRB in China. |
doi_str_mv | 10.1007/s11430-023-1265-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3074869000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3074869000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-fdd1a792b3c98402918b73f8dcddf2f4c593e50dbe93f25e0a0f3d66320316173</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouNT9Ad4CnqP5aJv2KItfsCB-HTyFtJnsdtltapIV119vSgVPzmWGmXleeF-Ezhm9ZJTKq8BYLiihXBDGy4LwIzRjVVkTVtXyOM2lzIkUTJyieQgbmkqkC5cz9PQCOrheb_HgwXRt7FyPncXwFT3sAK-71ZpE2A3gddx7wEYfAnaf4HFcA37X_Sp-A37uxk2jQ9efoROrtwHmvz1Db7c3r4t7sny8e1hcL0krWBmJNYZpWfNGtHWVU16zqpHCVqY1xnKbt0UtoKCmgVpYXgDV1ApTloLTxDMpMnQx6Q7efewhRLVxe5-cBCWozJP90WaG2PTVeheCB6sG3-20PyhG1RiemsJTKTw1hqd4YvjEhPTbr8D_Kf8P_QDC8XF1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3074869000</pqid></control><display><type>article</type><title>Seasonal prediction of extreme high-temperature days over the Yangtze River basin</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Pan, Shifeng ; Yin, Zhicong ; Duan, Mingkeng ; Han, Tingting ; Fan, Yi ; Huang, Yangyang ; Wang, Huijun</creator><creatorcontrib>Pan, Shifeng ; Yin, Zhicong ; Duan, Mingkeng ; Han, Tingting ; Fan, Yi ; Huang, Yangyang ; Wang, Huijun</creatorcontrib><description>Extreme high temperatures occur frequently over the densely populated Yangtze River basin (YRB) in China during summer, significantly impacting the local economic development and ecological system. However, accurate prediction of extreme high-temperature days in this region remains a challenge. Unfortunately, the Climate Forecast System Version 2 (CFSv2) exhibits poor performance in this regard. Thus, based on the interannual increment approach, we develop a hybrid seasonal prediction model over the YRB (HM
YRB
) to improve the prediction of extreme high-temperature days in summer.The HM
YRB
relies on the following four predictors: the observed preceding April–May snowmelt in north western Europe; the snow depth in March over the central Siberian Plateau; the CFSv2-forecasted concurrent summer sea surface temperatures around the Maritime Continent; and the 200-hPa geopotential height over the Tibetan Plateau. The HM
YRB
indicates good capabilities in predicting the interannual variability and trend of extreme high-temperature days, with a markable correlation coefficient of 0.58 and a percentage of the same sign (PSS) of 76% during 1983–2015 in the one-year-out cross-validation. Additionally, the HM
YRB
maintains high PSS skill (86%) and robustness in the independent prediction period (2016–2022). Furthermore, the HM
YRB
shows a good performance for years with high occurrence of extreme high-temperature days, with a hit ratio of 40%. These predictors used in HM
YRB
are beneficial in terms of the prediction skill for the average daily maximum temperature in summer over the YRB, albeit with biases existing in the magnitude. Our study provides promising insights into the prediction of 2022-like hot extremes over the YRB in China.</description><identifier>ISSN: 1674-7313</identifier><identifier>EISSN: 1869-1897</identifier><identifier>DOI: 10.1007/s11430-023-1265-2</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Climate prediction ; Climate system ; Correlation coefficient ; Correlation coefficients ; Daily temperatures ; Dynamic height ; Earth and Environmental Science ; Earth Sciences ; Economic development ; Extreme heat ; Extreme high temperatures ; Geopotential ; Geopotential height ; High temperature ; Interannual variability ; Maximum temperatures ; Population density ; Prediction models ; River basins ; Rivers ; Sea surface temperature ; Snow accumulation ; Snow depth ; Snowmelt ; Summer ; Surface temperature ; Temperature</subject><ispartof>Science China. Earth sciences, 2024-07, Vol.67 (7), p.2137-2147</ispartof><rights>Science China Press 2024</rights><rights>Science China Press 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-fdd1a792b3c98402918b73f8dcddf2f4c593e50dbe93f25e0a0f3d66320316173</citedby><cites>FETCH-LOGICAL-c316t-fdd1a792b3c98402918b73f8dcddf2f4c593e50dbe93f25e0a0f3d66320316173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11430-023-1265-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11430-023-1265-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Pan, Shifeng</creatorcontrib><creatorcontrib>Yin, Zhicong</creatorcontrib><creatorcontrib>Duan, Mingkeng</creatorcontrib><creatorcontrib>Han, Tingting</creatorcontrib><creatorcontrib>Fan, Yi</creatorcontrib><creatorcontrib>Huang, Yangyang</creatorcontrib><creatorcontrib>Wang, Huijun</creatorcontrib><title>Seasonal prediction of extreme high-temperature days over the Yangtze River basin</title><title>Science China. Earth sciences</title><addtitle>Sci. China Earth Sci</addtitle><description>Extreme high temperatures occur frequently over the densely populated Yangtze River basin (YRB) in China during summer, significantly impacting the local economic development and ecological system. However, accurate prediction of extreme high-temperature days in this region remains a challenge. Unfortunately, the Climate Forecast System Version 2 (CFSv2) exhibits poor performance in this regard. Thus, based on the interannual increment approach, we develop a hybrid seasonal prediction model over the YRB (HM
YRB
) to improve the prediction of extreme high-temperature days in summer.The HM
YRB
relies on the following four predictors: the observed preceding April–May snowmelt in north western Europe; the snow depth in March over the central Siberian Plateau; the CFSv2-forecasted concurrent summer sea surface temperatures around the Maritime Continent; and the 200-hPa geopotential height over the Tibetan Plateau. The HM
YRB
indicates good capabilities in predicting the interannual variability and trend of extreme high-temperature days, with a markable correlation coefficient of 0.58 and a percentage of the same sign (PSS) of 76% during 1983–2015 in the one-year-out cross-validation. Additionally, the HM
YRB
maintains high PSS skill (86%) and robustness in the independent prediction period (2016–2022). Furthermore, the HM
YRB
shows a good performance for years with high occurrence of extreme high-temperature days, with a hit ratio of 40%. These predictors used in HM
YRB
are beneficial in terms of the prediction skill for the average daily maximum temperature in summer over the YRB, albeit with biases existing in the magnitude. Our study provides promising insights into the prediction of 2022-like hot extremes over the YRB in China.</description><subject>Climate prediction</subject><subject>Climate system</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Daily temperatures</subject><subject>Dynamic height</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Economic development</subject><subject>Extreme heat</subject><subject>Extreme high temperatures</subject><subject>Geopotential</subject><subject>Geopotential height</subject><subject>High temperature</subject><subject>Interannual variability</subject><subject>Maximum temperatures</subject><subject>Population density</subject><subject>Prediction models</subject><subject>River basins</subject><subject>Rivers</subject><subject>Sea surface temperature</subject><subject>Snow accumulation</subject><subject>Snow depth</subject><subject>Snowmelt</subject><subject>Summer</subject><subject>Surface temperature</subject><subject>Temperature</subject><issn>1674-7313</issn><issn>1869-1897</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouNT9Ad4CnqP5aJv2KItfsCB-HTyFtJnsdtltapIV119vSgVPzmWGmXleeF-Ezhm9ZJTKq8BYLiihXBDGy4LwIzRjVVkTVtXyOM2lzIkUTJyieQgbmkqkC5cz9PQCOrheb_HgwXRt7FyPncXwFT3sAK-71ZpE2A3gddx7wEYfAnaf4HFcA37X_Sp-A37uxk2jQ9efoROrtwHmvz1Db7c3r4t7sny8e1hcL0krWBmJNYZpWfNGtHWVU16zqpHCVqY1xnKbt0UtoKCmgVpYXgDV1ApTloLTxDMpMnQx6Q7efewhRLVxe5-cBCWozJP90WaG2PTVeheCB6sG3-20PyhG1RiemsJTKTw1hqd4YvjEhPTbr8D_Kf8P_QDC8XF1</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Pan, Shifeng</creator><creator>Yin, Zhicong</creator><creator>Duan, Mingkeng</creator><creator>Han, Tingting</creator><creator>Fan, Yi</creator><creator>Huang, Yangyang</creator><creator>Wang, Huijun</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20240701</creationdate><title>Seasonal prediction of extreme high-temperature days over the Yangtze River basin</title><author>Pan, Shifeng ; Yin, Zhicong ; Duan, Mingkeng ; Han, Tingting ; Fan, Yi ; Huang, Yangyang ; Wang, Huijun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-fdd1a792b3c98402918b73f8dcddf2f4c593e50dbe93f25e0a0f3d66320316173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Climate prediction</topic><topic>Climate system</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Daily temperatures</topic><topic>Dynamic height</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Economic development</topic><topic>Extreme heat</topic><topic>Extreme high temperatures</topic><topic>Geopotential</topic><topic>Geopotential height</topic><topic>High temperature</topic><topic>Interannual variability</topic><topic>Maximum temperatures</topic><topic>Population density</topic><topic>Prediction models</topic><topic>River basins</topic><topic>Rivers</topic><topic>Sea surface temperature</topic><topic>Snow accumulation</topic><topic>Snow depth</topic><topic>Snowmelt</topic><topic>Summer</topic><topic>Surface temperature</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Shifeng</creatorcontrib><creatorcontrib>Yin, Zhicong</creatorcontrib><creatorcontrib>Duan, Mingkeng</creatorcontrib><creatorcontrib>Han, Tingting</creatorcontrib><creatorcontrib>Fan, Yi</creatorcontrib><creatorcontrib>Huang, Yangyang</creatorcontrib><creatorcontrib>Wang, Huijun</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Science China. Earth sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Shifeng</au><au>Yin, Zhicong</au><au>Duan, Mingkeng</au><au>Han, Tingting</au><au>Fan, Yi</au><au>Huang, Yangyang</au><au>Wang, Huijun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Seasonal prediction of extreme high-temperature days over the Yangtze River basin</atitle><jtitle>Science China. Earth sciences</jtitle><stitle>Sci. China Earth Sci</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>67</volume><issue>7</issue><spage>2137</spage><epage>2147</epage><pages>2137-2147</pages><issn>1674-7313</issn><eissn>1869-1897</eissn><abstract>Extreme high temperatures occur frequently over the densely populated Yangtze River basin (YRB) in China during summer, significantly impacting the local economic development and ecological system. However, accurate prediction of extreme high-temperature days in this region remains a challenge. Unfortunately, the Climate Forecast System Version 2 (CFSv2) exhibits poor performance in this regard. Thus, based on the interannual increment approach, we develop a hybrid seasonal prediction model over the YRB (HM
YRB
) to improve the prediction of extreme high-temperature days in summer.The HM
YRB
relies on the following four predictors: the observed preceding April–May snowmelt in north western Europe; the snow depth in March over the central Siberian Plateau; the CFSv2-forecasted concurrent summer sea surface temperatures around the Maritime Continent; and the 200-hPa geopotential height over the Tibetan Plateau. The HM
YRB
indicates good capabilities in predicting the interannual variability and trend of extreme high-temperature days, with a markable correlation coefficient of 0.58 and a percentage of the same sign (PSS) of 76% during 1983–2015 in the one-year-out cross-validation. Additionally, the HM
YRB
maintains high PSS skill (86%) and robustness in the independent prediction period (2016–2022). Furthermore, the HM
YRB
shows a good performance for years with high occurrence of extreme high-temperature days, with a hit ratio of 40%. These predictors used in HM
YRB
are beneficial in terms of the prediction skill for the average daily maximum temperature in summer over the YRB, albeit with biases existing in the magnitude. Our study provides promising insights into the prediction of 2022-like hot extremes over the YRB in China.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11430-023-1265-2</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-7313 |
ispartof | Science China. Earth sciences, 2024-07, Vol.67 (7), p.2137-2147 |
issn | 1674-7313 1869-1897 |
language | eng |
recordid | cdi_proquest_journals_3074869000 |
source | SpringerLink Journals; Alma/SFX Local Collection |
subjects | Climate prediction Climate system Correlation coefficient Correlation coefficients Daily temperatures Dynamic height Earth and Environmental Science Earth Sciences Economic development Extreme heat Extreme high temperatures Geopotential Geopotential height High temperature Interannual variability Maximum temperatures Population density Prediction models River basins Rivers Sea surface temperature Snow accumulation Snow depth Snowmelt Summer Surface temperature Temperature |
title | Seasonal prediction of extreme high-temperature days over the Yangtze River basin |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T03%3A36%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Seasonal%20prediction%20of%20extreme%20high-temperature%20days%20over%20the%20Yangtze%20River%20basin&rft.jtitle=Science%20China.%20Earth%20sciences&rft.au=Pan,%20Shifeng&rft.date=2024-07-01&rft.volume=67&rft.issue=7&rft.spage=2137&rft.epage=2147&rft.pages=2137-2147&rft.issn=1674-7313&rft.eissn=1869-1897&rft_id=info:doi/10.1007/s11430-023-1265-2&rft_dat=%3Cproquest_cross%3E3074869000%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3074869000&rft_id=info:pmid/&rfr_iscdi=true |