Enhancing Travel Decision-Making: A Contrastive Learning Approach for Personalized Review Rankings in Accommodations

User-generated reviews significantly influence consumer decisions, particularly in the travel domain when selecting accommodations. This paper contribution comprising two main elements. Firstly, we present a novel dataset of authentic guest reviews sourced from a prominent online travel platform, to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-06
Hauptverfasser: Igebaria, Reda, Fainman, Eran, Mizrachi, Sarai, Moran Beladev, Wang, Fengjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Igebaria, Reda
Fainman, Eran
Mizrachi, Sarai
Moran Beladev
Wang, Fengjun
description User-generated reviews significantly influence consumer decisions, particularly in the travel domain when selecting accommodations. This paper contribution comprising two main elements. Firstly, we present a novel dataset of authentic guest reviews sourced from a prominent online travel platform, totaling over two million reviews from 50,000 distinct accommodations. Secondly, we propose an innovative approach for personalized review ranking. Our method employs contrastive learning to intricately capture the relationship between a review and the contextual information of its respective reviewer. Through a comprehensive experimental study, we demonstrate that our approach surpasses several baselines across all reported metrics. Augmented by a comparative analysis, we showcase the efficacy of our method in elevating personalized review ranking. The implications of our research extend beyond the travel domain, with potential applications in other sectors where personalized review ranking is paramount, such as online e-commerce platforms.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3074866118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3074866118</sourcerecordid><originalsourceid>FETCH-proquest_journals_30748661183</originalsourceid><addsrcrecordid>eNqNzMuKwkAQheFmQBgZ8w4FrgNJt4nBXfDCLBREspeiLbWdWO10tRmYpzeCD-DqwOHn-1BDbUyeVhOtP1UicsmyTJdTXRRmqOKSz8jW8QmagB21sCDrxHlON_jT3zOoYe45BpToOoI1YeBnXt9uwaM9w9EH2FIQz9i6fzrAjjpHf7BDfgICjqG21l-v_oCxl2WkBkdshZLXfqnxatnMv9Ne_L2TxP3F30PPyd5k00lVlnlemfeqBwbpTFU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3074866118</pqid></control><display><type>article</type><title>Enhancing Travel Decision-Making: A Contrastive Learning Approach for Personalized Review Rankings in Accommodations</title><source>Free E- Journals</source><creator>Igebaria, Reda ; Fainman, Eran ; Mizrachi, Sarai ; Moran Beladev ; Wang, Fengjun</creator><creatorcontrib>Igebaria, Reda ; Fainman, Eran ; Mizrachi, Sarai ; Moran Beladev ; Wang, Fengjun</creatorcontrib><description>User-generated reviews significantly influence consumer decisions, particularly in the travel domain when selecting accommodations. This paper contribution comprising two main elements. Firstly, we present a novel dataset of authentic guest reviews sourced from a prominent online travel platform, totaling over two million reviews from 50,000 distinct accommodations. Secondly, we propose an innovative approach for personalized review ranking. Our method employs contrastive learning to intricately capture the relationship between a review and the contextual information of its respective reviewer. Through a comprehensive experimental study, we demonstrate that our approach surpasses several baselines across all reported metrics. Augmented by a comparative analysis, we showcase the efficacy of our method in elevating personalized review ranking. The implications of our research extend beyond the travel domain, with potential applications in other sectors where personalized review ranking is paramount, such as online e-commerce platforms.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Customization ; Effectiveness ; Learning ; Ranking ; User generated content</subject><ispartof>arXiv.org, 2024-06</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Igebaria, Reda</creatorcontrib><creatorcontrib>Fainman, Eran</creatorcontrib><creatorcontrib>Mizrachi, Sarai</creatorcontrib><creatorcontrib>Moran Beladev</creatorcontrib><creatorcontrib>Wang, Fengjun</creatorcontrib><title>Enhancing Travel Decision-Making: A Contrastive Learning Approach for Personalized Review Rankings in Accommodations</title><title>arXiv.org</title><description>User-generated reviews significantly influence consumer decisions, particularly in the travel domain when selecting accommodations. This paper contribution comprising two main elements. Firstly, we present a novel dataset of authentic guest reviews sourced from a prominent online travel platform, totaling over two million reviews from 50,000 distinct accommodations. Secondly, we propose an innovative approach for personalized review ranking. Our method employs contrastive learning to intricately capture the relationship between a review and the contextual information of its respective reviewer. Through a comprehensive experimental study, we demonstrate that our approach surpasses several baselines across all reported metrics. Augmented by a comparative analysis, we showcase the efficacy of our method in elevating personalized review ranking. The implications of our research extend beyond the travel domain, with potential applications in other sectors where personalized review ranking is paramount, such as online e-commerce platforms.</description><subject>Customization</subject><subject>Effectiveness</subject><subject>Learning</subject><subject>Ranking</subject><subject>User generated content</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNzMuKwkAQheFmQBgZ8w4FrgNJt4nBXfDCLBREspeiLbWdWO10tRmYpzeCD-DqwOHn-1BDbUyeVhOtP1UicsmyTJdTXRRmqOKSz8jW8QmagB21sCDrxHlON_jT3zOoYe45BpToOoI1YeBnXt9uwaM9w9EH2FIQz9i6fzrAjjpHf7BDfgICjqG21l-v_oCxl2WkBkdshZLXfqnxatnMv9Ne_L2TxP3F30PPyd5k00lVlnlemfeqBwbpTFU</recordid><startdate>20240630</startdate><enddate>20240630</enddate><creator>Igebaria, Reda</creator><creator>Fainman, Eran</creator><creator>Mizrachi, Sarai</creator><creator>Moran Beladev</creator><creator>Wang, Fengjun</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240630</creationdate><title>Enhancing Travel Decision-Making: A Contrastive Learning Approach for Personalized Review Rankings in Accommodations</title><author>Igebaria, Reda ; Fainman, Eran ; Mizrachi, Sarai ; Moran Beladev ; Wang, Fengjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30748661183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Customization</topic><topic>Effectiveness</topic><topic>Learning</topic><topic>Ranking</topic><topic>User generated content</topic><toplevel>online_resources</toplevel><creatorcontrib>Igebaria, Reda</creatorcontrib><creatorcontrib>Fainman, Eran</creatorcontrib><creatorcontrib>Mizrachi, Sarai</creatorcontrib><creatorcontrib>Moran Beladev</creatorcontrib><creatorcontrib>Wang, Fengjun</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Igebaria, Reda</au><au>Fainman, Eran</au><au>Mizrachi, Sarai</au><au>Moran Beladev</au><au>Wang, Fengjun</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Enhancing Travel Decision-Making: A Contrastive Learning Approach for Personalized Review Rankings in Accommodations</atitle><jtitle>arXiv.org</jtitle><date>2024-06-30</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>User-generated reviews significantly influence consumer decisions, particularly in the travel domain when selecting accommodations. This paper contribution comprising two main elements. Firstly, we present a novel dataset of authentic guest reviews sourced from a prominent online travel platform, totaling over two million reviews from 50,000 distinct accommodations. Secondly, we propose an innovative approach for personalized review ranking. Our method employs contrastive learning to intricately capture the relationship between a review and the contextual information of its respective reviewer. Through a comprehensive experimental study, we demonstrate that our approach surpasses several baselines across all reported metrics. Augmented by a comparative analysis, we showcase the efficacy of our method in elevating personalized review ranking. The implications of our research extend beyond the travel domain, with potential applications in other sectors where personalized review ranking is paramount, such as online e-commerce platforms.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_3074866118
source Free E- Journals
subjects Customization
Effectiveness
Learning
Ranking
User generated content
title Enhancing Travel Decision-Making: A Contrastive Learning Approach for Personalized Review Rankings in Accommodations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T03%3A41%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Enhancing%20Travel%20Decision-Making:%20A%20Contrastive%20Learning%20Approach%20for%20Personalized%20Review%20Rankings%20in%20Accommodations&rft.jtitle=arXiv.org&rft.au=Igebaria,%20Reda&rft.date=2024-06-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3074866118%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3074866118&rft_id=info:pmid/&rfr_iscdi=true