Enabling Mixed Effects Neural Networks for Diverse, Clustered Data Using Monte Carlo Methods
Neural networks often assume independence among input data samples, disregarding correlations arising from inherent clustering patterns in real-world datasets (e.g., due to different sites or repeated measurements). Recently, mixed effects neural networks (MENNs) which separate cluster-specific ...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-07 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Tschalzev, Andrej Nitschke, Paul Kirchdorfer, Lukas Lüdtke, Stefan Bartelt, Christian Stuckenschmidt, Heiner |
description | Neural networks often assume independence among input data samples, disregarding correlations arising from inherent clustering patterns in real-world datasets (e.g., due to different sites or repeated measurements). Recently, mixed effects neural networks (MENNs) which separate cluster-specific 'random effects' from cluster-invariant 'fixed effects' have been proposed to improve generalization and interpretability for clustered data. However, existing methods only allow for approximate quantification of cluster effects and are limited to regression and binary targets with only one clustering feature. We present MC-GMENN, a novel approach employing Monte Carlo methods to train Generalized Mixed Effects Neural Networks. We empirically demonstrate that MC-GMENN outperforms existing mixed effects deep learning models in terms of generalization performance, time complexity, and quantification of inter-cluster variance. Additionally, MC-GMENN is applicable to a wide range of datasets, including multi-class classification tasks with multiple high-cardinality categorical features. For these datasets, we show that MC-GMENN outperforms conventional encoding and embedding methods, simultaneously offering a principled methodology for interpreting the effects of clustering patterns. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3074864335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3074864335</sourcerecordid><originalsourceid>FETCH-proquest_journals_30748643353</originalsourceid><addsrcrecordid>eNqNi0sKwjAUAIMgWLR3eODWQk3627cVN3WlO6FE-6KtodG8VD2-RTyAq1nMzIR5XIh1kEWcz5hP1IVhyJOUx7Hw2LHs5Um3_QWq9o0NlErh2RHscLBSj3AvY28Eylgo2idawhXkeiCHdswL6SQc6Pub3iHk0moDFbqraWjBpkpqQv_HOVtuyn2-De7WPAYkV3dmsP2oahGmUZZEQsTiv-oDSiRCig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3074864335</pqid></control><display><type>article</type><title>Enabling Mixed Effects Neural Networks for Diverse, Clustered Data Using Monte Carlo Methods</title><source>Free E- Journals</source><creator>Tschalzev, Andrej ; Nitschke, Paul ; Kirchdorfer, Lukas ; Lüdtke, Stefan ; Bartelt, Christian ; Stuckenschmidt, Heiner</creator><creatorcontrib>Tschalzev, Andrej ; Nitschke, Paul ; Kirchdorfer, Lukas ; Lüdtke, Stefan ; Bartelt, Christian ; Stuckenschmidt, Heiner</creatorcontrib><description>Neural networks often assume independence among input data samples, disregarding correlations arising from inherent clustering patterns in real-world datasets (e.g., due to different sites or repeated measurements). Recently, mixed effects neural networks (MENNs) which separate cluster-specific 'random effects' from cluster-invariant 'fixed effects' have been proposed to improve generalization and interpretability for clustered data. However, existing methods only allow for approximate quantification of cluster effects and are limited to regression and binary targets with only one clustering feature. We present MC-GMENN, a novel approach employing Monte Carlo methods to train Generalized Mixed Effects Neural Networks. We empirically demonstrate that MC-GMENN outperforms existing mixed effects deep learning models in terms of generalization performance, time complexity, and quantification of inter-cluster variance. Additionally, MC-GMENN is applicable to a wide range of datasets, including multi-class classification tasks with multiple high-cardinality categorical features. For these datasets, we show that MC-GMENN outperforms conventional encoding and embedding methods, simultaneously offering a principled methodology for interpreting the effects of clustering patterns.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Clustering ; Clusters ; Datasets ; Machine learning ; Monte Carlo simulation ; Neural networks</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Tschalzev, Andrej</creatorcontrib><creatorcontrib>Nitschke, Paul</creatorcontrib><creatorcontrib>Kirchdorfer, Lukas</creatorcontrib><creatorcontrib>Lüdtke, Stefan</creatorcontrib><creatorcontrib>Bartelt, Christian</creatorcontrib><creatorcontrib>Stuckenschmidt, Heiner</creatorcontrib><title>Enabling Mixed Effects Neural Networks for Diverse, Clustered Data Using Monte Carlo Methods</title><title>arXiv.org</title><description>Neural networks often assume independence among input data samples, disregarding correlations arising from inherent clustering patterns in real-world datasets (e.g., due to different sites or repeated measurements). Recently, mixed effects neural networks (MENNs) which separate cluster-specific 'random effects' from cluster-invariant 'fixed effects' have been proposed to improve generalization and interpretability for clustered data. However, existing methods only allow for approximate quantification of cluster effects and are limited to regression and binary targets with only one clustering feature. We present MC-GMENN, a novel approach employing Monte Carlo methods to train Generalized Mixed Effects Neural Networks. We empirically demonstrate that MC-GMENN outperforms existing mixed effects deep learning models in terms of generalization performance, time complexity, and quantification of inter-cluster variance. Additionally, MC-GMENN is applicable to a wide range of datasets, including multi-class classification tasks with multiple high-cardinality categorical features. For these datasets, we show that MC-GMENN outperforms conventional encoding and embedding methods, simultaneously offering a principled methodology for interpreting the effects of clustering patterns.</description><subject>Clustering</subject><subject>Clusters</subject><subject>Datasets</subject><subject>Machine learning</subject><subject>Monte Carlo simulation</subject><subject>Neural networks</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi0sKwjAUAIMgWLR3eODWQk3627cVN3WlO6FE-6KtodG8VD2-RTyAq1nMzIR5XIh1kEWcz5hP1IVhyJOUx7Hw2LHs5Um3_QWq9o0NlErh2RHscLBSj3AvY28Eylgo2idawhXkeiCHdswL6SQc6Pub3iHk0moDFbqraWjBpkpqQv_HOVtuyn2-De7WPAYkV3dmsP2oahGmUZZEQsTiv-oDSiRCig</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Tschalzev, Andrej</creator><creator>Nitschke, Paul</creator><creator>Kirchdorfer, Lukas</creator><creator>Lüdtke, Stefan</creator><creator>Bartelt, Christian</creator><creator>Stuckenschmidt, Heiner</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240701</creationdate><title>Enabling Mixed Effects Neural Networks for Diverse, Clustered Data Using Monte Carlo Methods</title><author>Tschalzev, Andrej ; Nitschke, Paul ; Kirchdorfer, Lukas ; Lüdtke, Stefan ; Bartelt, Christian ; Stuckenschmidt, Heiner</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30748643353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Clustering</topic><topic>Clusters</topic><topic>Datasets</topic><topic>Machine learning</topic><topic>Monte Carlo simulation</topic><topic>Neural networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Tschalzev, Andrej</creatorcontrib><creatorcontrib>Nitschke, Paul</creatorcontrib><creatorcontrib>Kirchdorfer, Lukas</creatorcontrib><creatorcontrib>Lüdtke, Stefan</creatorcontrib><creatorcontrib>Bartelt, Christian</creatorcontrib><creatorcontrib>Stuckenschmidt, Heiner</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tschalzev, Andrej</au><au>Nitschke, Paul</au><au>Kirchdorfer, Lukas</au><au>Lüdtke, Stefan</au><au>Bartelt, Christian</au><au>Stuckenschmidt, Heiner</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Enabling Mixed Effects Neural Networks for Diverse, Clustered Data Using Monte Carlo Methods</atitle><jtitle>arXiv.org</jtitle><date>2024-07-01</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Neural networks often assume independence among input data samples, disregarding correlations arising from inherent clustering patterns in real-world datasets (e.g., due to different sites or repeated measurements). Recently, mixed effects neural networks (MENNs) which separate cluster-specific 'random effects' from cluster-invariant 'fixed effects' have been proposed to improve generalization and interpretability for clustered data. However, existing methods only allow for approximate quantification of cluster effects and are limited to regression and binary targets with only one clustering feature. We present MC-GMENN, a novel approach employing Monte Carlo methods to train Generalized Mixed Effects Neural Networks. We empirically demonstrate that MC-GMENN outperforms existing mixed effects deep learning models in terms of generalization performance, time complexity, and quantification of inter-cluster variance. Additionally, MC-GMENN is applicable to a wide range of datasets, including multi-class classification tasks with multiple high-cardinality categorical features. For these datasets, we show that MC-GMENN outperforms conventional encoding and embedding methods, simultaneously offering a principled methodology for interpreting the effects of clustering patterns.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3074864335 |
source | Free E- Journals |
subjects | Clustering Clusters Datasets Machine learning Monte Carlo simulation Neural networks |
title | Enabling Mixed Effects Neural Networks for Diverse, Clustered Data Using Monte Carlo Methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T23%3A22%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Enabling%20Mixed%20Effects%20Neural%20Networks%20for%20Diverse,%20Clustered%20Data%20Using%20Monte%20Carlo%20Methods&rft.jtitle=arXiv.org&rft.au=Tschalzev,%20Andrej&rft.date=2024-07-01&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3074864335%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3074864335&rft_id=info:pmid/&rfr_iscdi=true |