Achieving Energetic Superiority Through System-Level Quantum Circuit Simulation

Quantum Computational Superiority boasts rapid computation and high energy efficiency. Despite recent advances in classical algorithms aimed at refuting the milestone claim of Google's sycamore, challenges remain in generating uncorrelated samples of random quantum circuits. In this paper, we p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-06
Hauptverfasser: Fu, Rong, Su, Zhongling, Han-Sen, Zhong, Zhao, Xiti, Zhang, Jianyang, Pan, Feng, Zhang, Pan, Zhao, Xianhe, Ming-Cheng, Chen, Chao-Yang, Lu, Jian-Wei, Pan, Pei, Zhiling, Zhang, Xingcheng, Ouyang, Wanli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Fu, Rong
Su, Zhongling
Han-Sen, Zhong
Zhao, Xiti
Zhang, Jianyang
Pan, Feng
Zhang, Pan
Zhao, Xianhe
Ming-Cheng, Chen
Chao-Yang, Lu
Jian-Wei, Pan
Pei, Zhiling
Zhang, Xingcheng
Ouyang, Wanli
description Quantum Computational Superiority boasts rapid computation and high energy efficiency. Despite recent advances in classical algorithms aimed at refuting the milestone claim of Google's sycamore, challenges remain in generating uncorrelated samples of random quantum circuits. In this paper, we present a groundbreaking large-scale system technology that leverages optimization on global, node, and device levels to achieve unprecedented scalability for tensor networks. This enables the handling of large-scale tensor networks with memory capacities reaching tens of terabytes, surpassing memory space constraints on a single node. Our techniques enable accommodating large-scale tensor networks with up to tens of terabytes of memory, reaching up to 2304 GPUs with a peak computing power of 561 PFLOPS half-precision. Notably, we have achieved a time-to-solution of 14.22 seconds with energy consumption of 2.39 kWh which achieved fidelity of 0.002 and our most remarkable result is a time-to-solution of 17.18 seconds, with energy consumption of only 0.29 kWh which achieved a XEB of 0.002 after post-processing, outperforming Google's quantum processor Sycamore in both speed and energy efficiency, which recorded 600 seconds and 4.3 kWh, respectively.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3074863284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3074863284</sourcerecordid><originalsourceid>FETCH-proquest_journals_30748632843</originalsourceid><addsrcrecordid>eNqNys0KgkAUQOEhCJLyHQZaC9OMf9sQo0UQofsQuekVnbGZuYJvX4seoNVZfGfDAqnUKcpjKXcsdG4QQsg0k0miAnY_tz3CgrrjpQbbgceWVzSDRWPRr7zuraGu59XqPEzRDRYY-YMa7WniBdqW0PMKJxobj0Yf2PbVjA7CX_fseCnr4hrN1rwJnH8Ohqz-0lOJLM5TJfNY_Xd9AHO8P08</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3074863284</pqid></control><display><type>article</type><title>Achieving Energetic Superiority Through System-Level Quantum Circuit Simulation</title><source>Free E- Journals</source><creator>Fu, Rong ; Su, Zhongling ; Han-Sen, Zhong ; Zhao, Xiti ; Zhang, Jianyang ; Pan, Feng ; Zhang, Pan ; Zhao, Xianhe ; Ming-Cheng, Chen ; Chao-Yang, Lu ; Jian-Wei, Pan ; Pei, Zhiling ; Zhang, Xingcheng ; Ouyang, Wanli</creator><creatorcontrib>Fu, Rong ; Su, Zhongling ; Han-Sen, Zhong ; Zhao, Xiti ; Zhang, Jianyang ; Pan, Feng ; Zhang, Pan ; Zhao, Xianhe ; Ming-Cheng, Chen ; Chao-Yang, Lu ; Jian-Wei, Pan ; Pei, Zhiling ; Zhang, Xingcheng ; Ouyang, Wanli</creatorcontrib><description>Quantum Computational Superiority boasts rapid computation and high energy efficiency. Despite recent advances in classical algorithms aimed at refuting the milestone claim of Google's sycamore, challenges remain in generating uncorrelated samples of random quantum circuits. In this paper, we present a groundbreaking large-scale system technology that leverages optimization on global, node, and device levels to achieve unprecedented scalability for tensor networks. This enables the handling of large-scale tensor networks with memory capacities reaching tens of terabytes, surpassing memory space constraints on a single node. Our techniques enable accommodating large-scale tensor networks with up to tens of terabytes of memory, reaching up to 2304 GPUs with a peak computing power of 561 PFLOPS half-precision. Notably, we have achieved a time-to-solution of 14.22 seconds with energy consumption of 2.39 kWh which achieved fidelity of 0.002 and our most remarkable result is a time-to-solution of 17.18 seconds, with energy consumption of only 0.29 kWh which achieved a XEB of 0.002 after post-processing, outperforming Google's quantum processor Sycamore in both speed and energy efficiency, which recorded 600 seconds and 4.3 kWh, respectively.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Computer memory ; Energy consumption ; Energy efficiency ; Microprocessors ; Networks ; Tensors</subject><ispartof>arXiv.org, 2024-06</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Fu, Rong</creatorcontrib><creatorcontrib>Su, Zhongling</creatorcontrib><creatorcontrib>Han-Sen, Zhong</creatorcontrib><creatorcontrib>Zhao, Xiti</creatorcontrib><creatorcontrib>Zhang, Jianyang</creatorcontrib><creatorcontrib>Pan, Feng</creatorcontrib><creatorcontrib>Zhang, Pan</creatorcontrib><creatorcontrib>Zhao, Xianhe</creatorcontrib><creatorcontrib>Ming-Cheng, Chen</creatorcontrib><creatorcontrib>Chao-Yang, Lu</creatorcontrib><creatorcontrib>Jian-Wei, Pan</creatorcontrib><creatorcontrib>Pei, Zhiling</creatorcontrib><creatorcontrib>Zhang, Xingcheng</creatorcontrib><creatorcontrib>Ouyang, Wanli</creatorcontrib><title>Achieving Energetic Superiority Through System-Level Quantum Circuit Simulation</title><title>arXiv.org</title><description>Quantum Computational Superiority boasts rapid computation and high energy efficiency. Despite recent advances in classical algorithms aimed at refuting the milestone claim of Google's sycamore, challenges remain in generating uncorrelated samples of random quantum circuits. In this paper, we present a groundbreaking large-scale system technology that leverages optimization on global, node, and device levels to achieve unprecedented scalability for tensor networks. This enables the handling of large-scale tensor networks with memory capacities reaching tens of terabytes, surpassing memory space constraints on a single node. Our techniques enable accommodating large-scale tensor networks with up to tens of terabytes of memory, reaching up to 2304 GPUs with a peak computing power of 561 PFLOPS half-precision. Notably, we have achieved a time-to-solution of 14.22 seconds with energy consumption of 2.39 kWh which achieved fidelity of 0.002 and our most remarkable result is a time-to-solution of 17.18 seconds, with energy consumption of only 0.29 kWh which achieved a XEB of 0.002 after post-processing, outperforming Google's quantum processor Sycamore in both speed and energy efficiency, which recorded 600 seconds and 4.3 kWh, respectively.</description><subject>Algorithms</subject><subject>Computer memory</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Microprocessors</subject><subject>Networks</subject><subject>Tensors</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNys0KgkAUQOEhCJLyHQZaC9OMf9sQo0UQofsQuekVnbGZuYJvX4seoNVZfGfDAqnUKcpjKXcsdG4QQsg0k0miAnY_tz3CgrrjpQbbgceWVzSDRWPRr7zuraGu59XqPEzRDRYY-YMa7WniBdqW0PMKJxobj0Yf2PbVjA7CX_fseCnr4hrN1rwJnH8Ohqz-0lOJLM5TJfNY_Xd9AHO8P08</recordid><startdate>20240630</startdate><enddate>20240630</enddate><creator>Fu, Rong</creator><creator>Su, Zhongling</creator><creator>Han-Sen, Zhong</creator><creator>Zhao, Xiti</creator><creator>Zhang, Jianyang</creator><creator>Pan, Feng</creator><creator>Zhang, Pan</creator><creator>Zhao, Xianhe</creator><creator>Ming-Cheng, Chen</creator><creator>Chao-Yang, Lu</creator><creator>Jian-Wei, Pan</creator><creator>Pei, Zhiling</creator><creator>Zhang, Xingcheng</creator><creator>Ouyang, Wanli</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240630</creationdate><title>Achieving Energetic Superiority Through System-Level Quantum Circuit Simulation</title><author>Fu, Rong ; Su, Zhongling ; Han-Sen, Zhong ; Zhao, Xiti ; Zhang, Jianyang ; Pan, Feng ; Zhang, Pan ; Zhao, Xianhe ; Ming-Cheng, Chen ; Chao-Yang, Lu ; Jian-Wei, Pan ; Pei, Zhiling ; Zhang, Xingcheng ; Ouyang, Wanli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30748632843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Computer memory</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Microprocessors</topic><topic>Networks</topic><topic>Tensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Fu, Rong</creatorcontrib><creatorcontrib>Su, Zhongling</creatorcontrib><creatorcontrib>Han-Sen, Zhong</creatorcontrib><creatorcontrib>Zhao, Xiti</creatorcontrib><creatorcontrib>Zhang, Jianyang</creatorcontrib><creatorcontrib>Pan, Feng</creatorcontrib><creatorcontrib>Zhang, Pan</creatorcontrib><creatorcontrib>Zhao, Xianhe</creatorcontrib><creatorcontrib>Ming-Cheng, Chen</creatorcontrib><creatorcontrib>Chao-Yang, Lu</creatorcontrib><creatorcontrib>Jian-Wei, Pan</creatorcontrib><creatorcontrib>Pei, Zhiling</creatorcontrib><creatorcontrib>Zhang, Xingcheng</creatorcontrib><creatorcontrib>Ouyang, Wanli</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Rong</au><au>Su, Zhongling</au><au>Han-Sen, Zhong</au><au>Zhao, Xiti</au><au>Zhang, Jianyang</au><au>Pan, Feng</au><au>Zhang, Pan</au><au>Zhao, Xianhe</au><au>Ming-Cheng, Chen</au><au>Chao-Yang, Lu</au><au>Jian-Wei, Pan</au><au>Pei, Zhiling</au><au>Zhang, Xingcheng</au><au>Ouyang, Wanli</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Achieving Energetic Superiority Through System-Level Quantum Circuit Simulation</atitle><jtitle>arXiv.org</jtitle><date>2024-06-30</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Quantum Computational Superiority boasts rapid computation and high energy efficiency. Despite recent advances in classical algorithms aimed at refuting the milestone claim of Google's sycamore, challenges remain in generating uncorrelated samples of random quantum circuits. In this paper, we present a groundbreaking large-scale system technology that leverages optimization on global, node, and device levels to achieve unprecedented scalability for tensor networks. This enables the handling of large-scale tensor networks with memory capacities reaching tens of terabytes, surpassing memory space constraints on a single node. Our techniques enable accommodating large-scale tensor networks with up to tens of terabytes of memory, reaching up to 2304 GPUs with a peak computing power of 561 PFLOPS half-precision. Notably, we have achieved a time-to-solution of 14.22 seconds with energy consumption of 2.39 kWh which achieved fidelity of 0.002 and our most remarkable result is a time-to-solution of 17.18 seconds, with energy consumption of only 0.29 kWh which achieved a XEB of 0.002 after post-processing, outperforming Google's quantum processor Sycamore in both speed and energy efficiency, which recorded 600 seconds and 4.3 kWh, respectively.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_3074863284
source Free E- Journals
subjects Algorithms
Computer memory
Energy consumption
Energy efficiency
Microprocessors
Networks
Tensors
title Achieving Energetic Superiority Through System-Level Quantum Circuit Simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A52%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Achieving%20Energetic%20Superiority%20Through%20System-Level%20Quantum%20Circuit%20Simulation&rft.jtitle=arXiv.org&rft.au=Fu,%20Rong&rft.date=2024-06-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3074863284%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3074863284&rft_id=info:pmid/&rfr_iscdi=true