DSTVis: toward better interactive visual analysis of Drones’ spatio-temporal data
Maintaining the normal flight of drones is crucial for drone operators. Analyzing the operation status of drones and adjusting flight parameters are essential to achieve this goal. However, as drone technology continues to evolve, the volume and complexity of spatio-temporal data related to drone fl...
Gespeichert in:
Veröffentlicht in: | Journal of visualization 2024, Vol.27 (4), p.623-638 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 638 |
---|---|
container_issue | 4 |
container_start_page | 623 |
container_title | Journal of visualization |
container_volume | 27 |
creator | Chen, Fengxin Yu, Ye Ni, Liangliang Zhang, Zhenya Lu, Qiang |
description | Maintaining the normal flight of drones is crucial for drone operators. Analyzing the operation status of drones and adjusting flight parameters are essential to achieve this goal. However, as drone technology continues to evolve, the volume and complexity of spatio-temporal data related to drone flight status have grown exponentially. The complexity of this data poses a challenge to effective visualization, which can impact operators’ analysis and decision-making. Currently, there is limited research on identifying flight attributes from a large collection of drone time series data. Two challenges were identified: (1) visual clutter from spatio-temporal data; (2) effective integration of time and space properties. By collaborating with domain experts, we addressed two challenges with DSTVis, a novel interactive system for operators to visually analyze spatio-temporal data of drones. For Challenge 1, we designed dynamic interactive views by abstracting and stratifying spatio-temporal data, enabling effective exploration of large amounts of data. For Challenge 2, a two-dimensional map is utilized to integrate time information and assist users in comprehending the spatio-temporal properties. The effectiveness of the system is evaluated with a usage scenario on a real-world historical dataset and received positive feedback from experts.
Graphic abstract |
doi_str_mv | 10.1007/s12650-024-00982-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3074787681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3074787681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-90e4f907a5aeb27b77aba91a48552d5bd31a4c7fa13f0b59a81dc65dbbb7468e3</originalsourceid><addsrcrecordid>eNp9kMFKAzEURYMoWKs_4CrgOppkJpOMO2mtCgUXrW7Dy0xGprSTMUkr3fkb_p5fYnQEd27euzzuvTwOQueMXjJK5VVgvBCUUJ4TSkvFCT9AI6akIKqU4jDpLM-ISodjdBLCilLOcslGaDFdLJ_bcI2jewNfY2NjtB63XZpQxXZn8a4NW1hj6GC9D23ArsFT7zobPt8_cOghto5Eu-mdT64aIpyiowbWwZ797jF6mt0uJ_dk_nj3MLmZk4pLGklJbd6UVIIAa7g0UoKBkkGuhOC1MHWWdCUbYFlDjShBsboqRG2MkXmhbDZGF0Nv793r1oaoV27r05tBZ1TmUslCseTig6vyLgRvG937dgN-rxnV3_D0AE8nePoHnuYplA2hkMzdi_V_1f-kvgBEM3PT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3074787681</pqid></control><display><type>article</type><title>DSTVis: toward better interactive visual analysis of Drones’ spatio-temporal data</title><source>SpringerLink Journals</source><creator>Chen, Fengxin ; Yu, Ye ; Ni, Liangliang ; Zhang, Zhenya ; Lu, Qiang</creator><creatorcontrib>Chen, Fengxin ; Yu, Ye ; Ni, Liangliang ; Zhang, Zhenya ; Lu, Qiang</creatorcontrib><description>Maintaining the normal flight of drones is crucial for drone operators. Analyzing the operation status of drones and adjusting flight parameters are essential to achieve this goal. However, as drone technology continues to evolve, the volume and complexity of spatio-temporal data related to drone flight status have grown exponentially. The complexity of this data poses a challenge to effective visualization, which can impact operators’ analysis and decision-making. Currently, there is limited research on identifying flight attributes from a large collection of drone time series data. Two challenges were identified: (1) visual clutter from spatio-temporal data; (2) effective integration of time and space properties. By collaborating with domain experts, we addressed two challenges with DSTVis, a novel interactive system for operators to visually analyze spatio-temporal data of drones. For Challenge 1, we designed dynamic interactive views by abstracting and stratifying spatio-temporal data, enabling effective exploration of large amounts of data. For Challenge 2, a two-dimensional map is utilized to integrate time information and assist users in comprehending the spatio-temporal properties. The effectiveness of the system is evaluated with a usage scenario on a real-world historical dataset and received positive feedback from experts.
Graphic abstract</description><identifier>ISSN: 1343-8875</identifier><identifier>EISSN: 1875-8975</identifier><identifier>DOI: 10.1007/s12650-024-00982-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Continuum Physics ; Clutter ; Complexity ; Computer Imaging ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Flight ; Heat and Mass Transfer ; Impact analysis ; Interactive systems ; Operators ; Pattern Recognition and Graphics ; Positive feedback ; Regular Paper ; Spatiotemporal data ; Vision ; Visual flight</subject><ispartof>Journal of visualization, 2024, Vol.27 (4), p.623-638</ispartof><rights>The Visualization Society of Japan 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-90e4f907a5aeb27b77aba91a48552d5bd31a4c7fa13f0b59a81dc65dbbb7468e3</cites><orcidid>0000-0003-0554-7497</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12650-024-00982-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12650-024-00982-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Chen, Fengxin</creatorcontrib><creatorcontrib>Yu, Ye</creatorcontrib><creatorcontrib>Ni, Liangliang</creatorcontrib><creatorcontrib>Zhang, Zhenya</creatorcontrib><creatorcontrib>Lu, Qiang</creatorcontrib><title>DSTVis: toward better interactive visual analysis of Drones’ spatio-temporal data</title><title>Journal of visualization</title><addtitle>J Vis</addtitle><description>Maintaining the normal flight of drones is crucial for drone operators. Analyzing the operation status of drones and adjusting flight parameters are essential to achieve this goal. However, as drone technology continues to evolve, the volume and complexity of spatio-temporal data related to drone flight status have grown exponentially. The complexity of this data poses a challenge to effective visualization, which can impact operators’ analysis and decision-making. Currently, there is limited research on identifying flight attributes from a large collection of drone time series data. Two challenges were identified: (1) visual clutter from spatio-temporal data; (2) effective integration of time and space properties. By collaborating with domain experts, we addressed two challenges with DSTVis, a novel interactive system for operators to visually analyze spatio-temporal data of drones. For Challenge 1, we designed dynamic interactive views by abstracting and stratifying spatio-temporal data, enabling effective exploration of large amounts of data. For Challenge 2, a two-dimensional map is utilized to integrate time information and assist users in comprehending the spatio-temporal properties. The effectiveness of the system is evaluated with a usage scenario on a real-world historical dataset and received positive feedback from experts.
Graphic abstract</description><subject>Classical and Continuum Physics</subject><subject>Clutter</subject><subject>Complexity</subject><subject>Computer Imaging</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Flight</subject><subject>Heat and Mass Transfer</subject><subject>Impact analysis</subject><subject>Interactive systems</subject><subject>Operators</subject><subject>Pattern Recognition and Graphics</subject><subject>Positive feedback</subject><subject>Regular Paper</subject><subject>Spatiotemporal data</subject><subject>Vision</subject><subject>Visual flight</subject><issn>1343-8875</issn><issn>1875-8975</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEURYMoWKs_4CrgOppkJpOMO2mtCgUXrW7Dy0xGprSTMUkr3fkb_p5fYnQEd27euzzuvTwOQueMXjJK5VVgvBCUUJ4TSkvFCT9AI6akIKqU4jDpLM-ISodjdBLCilLOcslGaDFdLJ_bcI2jewNfY2NjtB63XZpQxXZn8a4NW1hj6GC9D23ArsFT7zobPt8_cOghto5Eu-mdT64aIpyiowbWwZ797jF6mt0uJ_dk_nj3MLmZk4pLGklJbd6UVIIAa7g0UoKBkkGuhOC1MHWWdCUbYFlDjShBsboqRG2MkXmhbDZGF0Nv793r1oaoV27r05tBZ1TmUslCseTig6vyLgRvG937dgN-rxnV3_D0AE8nePoHnuYplA2hkMzdi_V_1f-kvgBEM3PT</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Chen, Fengxin</creator><creator>Yu, Ye</creator><creator>Ni, Liangliang</creator><creator>Zhang, Zhenya</creator><creator>Lu, Qiang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0554-7497</orcidid></search><sort><creationdate>2024</creationdate><title>DSTVis: toward better interactive visual analysis of Drones’ spatio-temporal data</title><author>Chen, Fengxin ; Yu, Ye ; Ni, Liangliang ; Zhang, Zhenya ; Lu, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-90e4f907a5aeb27b77aba91a48552d5bd31a4c7fa13f0b59a81dc65dbbb7468e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Classical and Continuum Physics</topic><topic>Clutter</topic><topic>Complexity</topic><topic>Computer Imaging</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Flight</topic><topic>Heat and Mass Transfer</topic><topic>Impact analysis</topic><topic>Interactive systems</topic><topic>Operators</topic><topic>Pattern Recognition and Graphics</topic><topic>Positive feedback</topic><topic>Regular Paper</topic><topic>Spatiotemporal data</topic><topic>Vision</topic><topic>Visual flight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Fengxin</creatorcontrib><creatorcontrib>Yu, Ye</creatorcontrib><creatorcontrib>Ni, Liangliang</creatorcontrib><creatorcontrib>Zhang, Zhenya</creatorcontrib><creatorcontrib>Lu, Qiang</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of visualization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Fengxin</au><au>Yu, Ye</au><au>Ni, Liangliang</au><au>Zhang, Zhenya</au><au>Lu, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DSTVis: toward better interactive visual analysis of Drones’ spatio-temporal data</atitle><jtitle>Journal of visualization</jtitle><stitle>J Vis</stitle><date>2024</date><risdate>2024</risdate><volume>27</volume><issue>4</issue><spage>623</spage><epage>638</epage><pages>623-638</pages><issn>1343-8875</issn><eissn>1875-8975</eissn><abstract>Maintaining the normal flight of drones is crucial for drone operators. Analyzing the operation status of drones and adjusting flight parameters are essential to achieve this goal. However, as drone technology continues to evolve, the volume and complexity of spatio-temporal data related to drone flight status have grown exponentially. The complexity of this data poses a challenge to effective visualization, which can impact operators’ analysis and decision-making. Currently, there is limited research on identifying flight attributes from a large collection of drone time series data. Two challenges were identified: (1) visual clutter from spatio-temporal data; (2) effective integration of time and space properties. By collaborating with domain experts, we addressed two challenges with DSTVis, a novel interactive system for operators to visually analyze spatio-temporal data of drones. For Challenge 1, we designed dynamic interactive views by abstracting and stratifying spatio-temporal data, enabling effective exploration of large amounts of data. For Challenge 2, a two-dimensional map is utilized to integrate time information and assist users in comprehending the spatio-temporal properties. The effectiveness of the system is evaluated with a usage scenario on a real-world historical dataset and received positive feedback from experts.
Graphic abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12650-024-00982-2</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-0554-7497</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1343-8875 |
ispartof | Journal of visualization, 2024, Vol.27 (4), p.623-638 |
issn | 1343-8875 1875-8975 |
language | eng |
recordid | cdi_proquest_journals_3074787681 |
source | SpringerLink Journals |
subjects | Classical and Continuum Physics Clutter Complexity Computer Imaging Engineering Engineering Fluid Dynamics Engineering Thermodynamics Flight Heat and Mass Transfer Impact analysis Interactive systems Operators Pattern Recognition and Graphics Positive feedback Regular Paper Spatiotemporal data Vision Visual flight |
title | DSTVis: toward better interactive visual analysis of Drones’ spatio-temporal data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T05%3A52%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DSTVis:%20toward%20better%20interactive%20visual%20analysis%20of%20Drones%E2%80%99%20spatio-temporal%20data&rft.jtitle=Journal%20of%20visualization&rft.au=Chen,%20Fengxin&rft.date=2024&rft.volume=27&rft.issue=4&rft.spage=623&rft.epage=638&rft.pages=623-638&rft.issn=1343-8875&rft.eissn=1875-8975&rft_id=info:doi/10.1007/s12650-024-00982-2&rft_dat=%3Cproquest_cross%3E3074787681%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3074787681&rft_id=info:pmid/&rfr_iscdi=true |