DSTVis: toward better interactive visual analysis of Drones’ spatio-temporal data

Maintaining the normal flight of drones is crucial for drone operators. Analyzing the operation status of drones and adjusting flight parameters are essential to achieve this goal. However, as drone technology continues to evolve, the volume and complexity of spatio-temporal data related to drone fl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of visualization 2024, Vol.27 (4), p.623-638
Hauptverfasser: Chen, Fengxin, Yu, Ye, Ni, Liangliang, Zhang, Zhenya, Lu, Qiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 638
container_issue 4
container_start_page 623
container_title Journal of visualization
container_volume 27
creator Chen, Fengxin
Yu, Ye
Ni, Liangliang
Zhang, Zhenya
Lu, Qiang
description Maintaining the normal flight of drones is crucial for drone operators. Analyzing the operation status of drones and adjusting flight parameters are essential to achieve this goal. However, as drone technology continues to evolve, the volume and complexity of spatio-temporal data related to drone flight status have grown exponentially. The complexity of this data poses a challenge to effective visualization, which can impact operators’ analysis and decision-making. Currently, there is limited research on identifying flight attributes from a large collection of drone time series data. Two challenges were identified: (1) visual clutter from spatio-temporal data; (2) effective integration of time and space properties. By collaborating with domain experts, we addressed two challenges with DSTVis, a novel interactive system for operators to visually analyze spatio-temporal data of drones. For Challenge 1, we designed dynamic interactive views by abstracting and stratifying spatio-temporal data, enabling effective exploration of large amounts of data. For Challenge 2, a two-dimensional map is utilized to integrate time information and assist users in comprehending the spatio-temporal properties. The effectiveness of the system is evaluated with a usage scenario on a real-world historical dataset and received positive feedback from experts. Graphic abstract
doi_str_mv 10.1007/s12650-024-00982-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3074787681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3074787681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-90e4f907a5aeb27b77aba91a48552d5bd31a4c7fa13f0b59a81dc65dbbb7468e3</originalsourceid><addsrcrecordid>eNp9kMFKAzEURYMoWKs_4CrgOppkJpOMO2mtCgUXrW7Dy0xGprSTMUkr3fkb_p5fYnQEd27euzzuvTwOQueMXjJK5VVgvBCUUJ4TSkvFCT9AI6akIKqU4jDpLM-ISodjdBLCilLOcslGaDFdLJ_bcI2jewNfY2NjtB63XZpQxXZn8a4NW1hj6GC9D23ArsFT7zobPt8_cOghto5Eu-mdT64aIpyiowbWwZ797jF6mt0uJ_dk_nj3MLmZk4pLGklJbd6UVIIAa7g0UoKBkkGuhOC1MHWWdCUbYFlDjShBsboqRG2MkXmhbDZGF0Nv793r1oaoV27r05tBZ1TmUslCseTig6vyLgRvG937dgN-rxnV3_D0AE8nePoHnuYplA2hkMzdi_V_1f-kvgBEM3PT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3074787681</pqid></control><display><type>article</type><title>DSTVis: toward better interactive visual analysis of Drones’ spatio-temporal data</title><source>SpringerLink Journals</source><creator>Chen, Fengxin ; Yu, Ye ; Ni, Liangliang ; Zhang, Zhenya ; Lu, Qiang</creator><creatorcontrib>Chen, Fengxin ; Yu, Ye ; Ni, Liangliang ; Zhang, Zhenya ; Lu, Qiang</creatorcontrib><description>Maintaining the normal flight of drones is crucial for drone operators. Analyzing the operation status of drones and adjusting flight parameters are essential to achieve this goal. However, as drone technology continues to evolve, the volume and complexity of spatio-temporal data related to drone flight status have grown exponentially. The complexity of this data poses a challenge to effective visualization, which can impact operators’ analysis and decision-making. Currently, there is limited research on identifying flight attributes from a large collection of drone time series data. Two challenges were identified: (1) visual clutter from spatio-temporal data; (2) effective integration of time and space properties. By collaborating with domain experts, we addressed two challenges with DSTVis, a novel interactive system for operators to visually analyze spatio-temporal data of drones. For Challenge 1, we designed dynamic interactive views by abstracting and stratifying spatio-temporal data, enabling effective exploration of large amounts of data. For Challenge 2, a two-dimensional map is utilized to integrate time information and assist users in comprehending the spatio-temporal properties. The effectiveness of the system is evaluated with a usage scenario on a real-world historical dataset and received positive feedback from experts. Graphic abstract</description><identifier>ISSN: 1343-8875</identifier><identifier>EISSN: 1875-8975</identifier><identifier>DOI: 10.1007/s12650-024-00982-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Continuum Physics ; Clutter ; Complexity ; Computer Imaging ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Flight ; Heat and Mass Transfer ; Impact analysis ; Interactive systems ; Operators ; Pattern Recognition and Graphics ; Positive feedback ; Regular Paper ; Spatiotemporal data ; Vision ; Visual flight</subject><ispartof>Journal of visualization, 2024, Vol.27 (4), p.623-638</ispartof><rights>The Visualization Society of Japan 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-90e4f907a5aeb27b77aba91a48552d5bd31a4c7fa13f0b59a81dc65dbbb7468e3</cites><orcidid>0000-0003-0554-7497</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12650-024-00982-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12650-024-00982-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Chen, Fengxin</creatorcontrib><creatorcontrib>Yu, Ye</creatorcontrib><creatorcontrib>Ni, Liangliang</creatorcontrib><creatorcontrib>Zhang, Zhenya</creatorcontrib><creatorcontrib>Lu, Qiang</creatorcontrib><title>DSTVis: toward better interactive visual analysis of Drones’ spatio-temporal data</title><title>Journal of visualization</title><addtitle>J Vis</addtitle><description>Maintaining the normal flight of drones is crucial for drone operators. Analyzing the operation status of drones and adjusting flight parameters are essential to achieve this goal. However, as drone technology continues to evolve, the volume and complexity of spatio-temporal data related to drone flight status have grown exponentially. The complexity of this data poses a challenge to effective visualization, which can impact operators’ analysis and decision-making. Currently, there is limited research on identifying flight attributes from a large collection of drone time series data. Two challenges were identified: (1) visual clutter from spatio-temporal data; (2) effective integration of time and space properties. By collaborating with domain experts, we addressed two challenges with DSTVis, a novel interactive system for operators to visually analyze spatio-temporal data of drones. For Challenge 1, we designed dynamic interactive views by abstracting and stratifying spatio-temporal data, enabling effective exploration of large amounts of data. For Challenge 2, a two-dimensional map is utilized to integrate time information and assist users in comprehending the spatio-temporal properties. The effectiveness of the system is evaluated with a usage scenario on a real-world historical dataset and received positive feedback from experts. Graphic abstract</description><subject>Classical and Continuum Physics</subject><subject>Clutter</subject><subject>Complexity</subject><subject>Computer Imaging</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Flight</subject><subject>Heat and Mass Transfer</subject><subject>Impact analysis</subject><subject>Interactive systems</subject><subject>Operators</subject><subject>Pattern Recognition and Graphics</subject><subject>Positive feedback</subject><subject>Regular Paper</subject><subject>Spatiotemporal data</subject><subject>Vision</subject><subject>Visual flight</subject><issn>1343-8875</issn><issn>1875-8975</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEURYMoWKs_4CrgOppkJpOMO2mtCgUXrW7Dy0xGprSTMUkr3fkb_p5fYnQEd27euzzuvTwOQueMXjJK5VVgvBCUUJ4TSkvFCT9AI6akIKqU4jDpLM-ISodjdBLCilLOcslGaDFdLJ_bcI2jewNfY2NjtB63XZpQxXZn8a4NW1hj6GC9D23ArsFT7zobPt8_cOghto5Eu-mdT64aIpyiowbWwZ797jF6mt0uJ_dk_nj3MLmZk4pLGklJbd6UVIIAa7g0UoKBkkGuhOC1MHWWdCUbYFlDjShBsboqRG2MkXmhbDZGF0Nv793r1oaoV27r05tBZ1TmUslCseTig6vyLgRvG937dgN-rxnV3_D0AE8nePoHnuYplA2hkMzdi_V_1f-kvgBEM3PT</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Chen, Fengxin</creator><creator>Yu, Ye</creator><creator>Ni, Liangliang</creator><creator>Zhang, Zhenya</creator><creator>Lu, Qiang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0554-7497</orcidid></search><sort><creationdate>2024</creationdate><title>DSTVis: toward better interactive visual analysis of Drones’ spatio-temporal data</title><author>Chen, Fengxin ; Yu, Ye ; Ni, Liangliang ; Zhang, Zhenya ; Lu, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-90e4f907a5aeb27b77aba91a48552d5bd31a4c7fa13f0b59a81dc65dbbb7468e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Classical and Continuum Physics</topic><topic>Clutter</topic><topic>Complexity</topic><topic>Computer Imaging</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Flight</topic><topic>Heat and Mass Transfer</topic><topic>Impact analysis</topic><topic>Interactive systems</topic><topic>Operators</topic><topic>Pattern Recognition and Graphics</topic><topic>Positive feedback</topic><topic>Regular Paper</topic><topic>Spatiotemporal data</topic><topic>Vision</topic><topic>Visual flight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Fengxin</creatorcontrib><creatorcontrib>Yu, Ye</creatorcontrib><creatorcontrib>Ni, Liangliang</creatorcontrib><creatorcontrib>Zhang, Zhenya</creatorcontrib><creatorcontrib>Lu, Qiang</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of visualization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Fengxin</au><au>Yu, Ye</au><au>Ni, Liangliang</au><au>Zhang, Zhenya</au><au>Lu, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DSTVis: toward better interactive visual analysis of Drones’ spatio-temporal data</atitle><jtitle>Journal of visualization</jtitle><stitle>J Vis</stitle><date>2024</date><risdate>2024</risdate><volume>27</volume><issue>4</issue><spage>623</spage><epage>638</epage><pages>623-638</pages><issn>1343-8875</issn><eissn>1875-8975</eissn><abstract>Maintaining the normal flight of drones is crucial for drone operators. Analyzing the operation status of drones and adjusting flight parameters are essential to achieve this goal. However, as drone technology continues to evolve, the volume and complexity of spatio-temporal data related to drone flight status have grown exponentially. The complexity of this data poses a challenge to effective visualization, which can impact operators’ analysis and decision-making. Currently, there is limited research on identifying flight attributes from a large collection of drone time series data. Two challenges were identified: (1) visual clutter from spatio-temporal data; (2) effective integration of time and space properties. By collaborating with domain experts, we addressed two challenges with DSTVis, a novel interactive system for operators to visually analyze spatio-temporal data of drones. For Challenge 1, we designed dynamic interactive views by abstracting and stratifying spatio-temporal data, enabling effective exploration of large amounts of data. For Challenge 2, a two-dimensional map is utilized to integrate time information and assist users in comprehending the spatio-temporal properties. The effectiveness of the system is evaluated with a usage scenario on a real-world historical dataset and received positive feedback from experts. Graphic abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12650-024-00982-2</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-0554-7497</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1343-8875
ispartof Journal of visualization, 2024, Vol.27 (4), p.623-638
issn 1343-8875
1875-8975
language eng
recordid cdi_proquest_journals_3074787681
source SpringerLink Journals
subjects Classical and Continuum Physics
Clutter
Complexity
Computer Imaging
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Flight
Heat and Mass Transfer
Impact analysis
Interactive systems
Operators
Pattern Recognition and Graphics
Positive feedback
Regular Paper
Spatiotemporal data
Vision
Visual flight
title DSTVis: toward better interactive visual analysis of Drones’ spatio-temporal data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T05%3A52%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DSTVis:%20toward%20better%20interactive%20visual%20analysis%20of%20Drones%E2%80%99%20spatio-temporal%20data&rft.jtitle=Journal%20of%20visualization&rft.au=Chen,%20Fengxin&rft.date=2024&rft.volume=27&rft.issue=4&rft.spage=623&rft.epage=638&rft.pages=623-638&rft.issn=1343-8875&rft.eissn=1875-8975&rft_id=info:doi/10.1007/s12650-024-00982-2&rft_dat=%3Cproquest_cross%3E3074787681%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3074787681&rft_id=info:pmid/&rfr_iscdi=true