Structure-aware World Model for Probe Guidance via Large-scale Self-supervised Pre-train
The complex structure of the heart leads to significant challenges in echocardiography, especially in acquisition cardiac ultrasound images. Successful echocardiography requires a thorough understanding of the structures on the two-dimensional plane and the spatial relationships between planes in th...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-07 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Jiang, Haojun Li, Meng Sun, Zhenguo Jia, Ning Sun, Yu Luo, Shaqi Song, Shiji Huang, Gao |
description | The complex structure of the heart leads to significant challenges in echocardiography, especially in acquisition cardiac ultrasound images. Successful echocardiography requires a thorough understanding of the structures on the two-dimensional plane and the spatial relationships between planes in three-dimensional space. In this paper, we innovatively propose a large-scale self-supervised pre-training method to acquire a cardiac structure-aware world model. The core innovation lies in constructing a self-supervised task that requires structural inference by predicting masked structures on a 2D plane and imagining another plane based on pose transformation in 3D space. To support large-scale pre-training, we collected over 1.36 million echocardiograms from ten standard views, along with their 3D spatial poses. In the downstream probe guidance task, we demonstrate that our pre-trained model consistently reduces guidance errors across the ten most common standard views on the test set with 0.29 million samples from 74 routine clinical scans, indicating that structure-aware pre-training benefits the scanning. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3074224413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3074224413</sourcerecordid><originalsourceid>FETCH-proquest_journals_30742244133</originalsourceid><addsrcrecordid>eNqNjr0KwjAYAIMgWLTvEHAOpElr3cWfQUGooFuJzVdJCU39ktTXt4MP4HTD3XAzkggpM7bNhViQ1PuOcy42pSgKmZBHFTA2ISIw9VEI9O7QanpxGixtHdIruifQYzRa9Q3Q0Sh6VvgC5htlgVZgW-bjADgaD3rKgQVUpl-Reaush_THJVkf9rfdiQ3o3hF8qDsXsZ9ULXk5veV5JuV_1Rdod0Fy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3074224413</pqid></control><display><type>article</type><title>Structure-aware World Model for Probe Guidance via Large-scale Self-supervised Pre-train</title><source>Free E- Journals</source><creator>Jiang, Haojun ; Li, Meng ; Sun, Zhenguo ; Jia, Ning ; Sun, Yu ; Luo, Shaqi ; Song, Shiji ; Huang, Gao</creator><creatorcontrib>Jiang, Haojun ; Li, Meng ; Sun, Zhenguo ; Jia, Ning ; Sun, Yu ; Luo, Shaqi ; Song, Shiji ; Huang, Gao</creatorcontrib><description>The complex structure of the heart leads to significant challenges in echocardiography, especially in acquisition cardiac ultrasound images. Successful echocardiography requires a thorough understanding of the structures on the two-dimensional plane and the spatial relationships between planes in three-dimensional space. In this paper, we innovatively propose a large-scale self-supervised pre-training method to acquire a cardiac structure-aware world model. The core innovation lies in constructing a self-supervised task that requires structural inference by predicting masked structures on a 2D plane and imagining another plane based on pose transformation in 3D space. To support large-scale pre-training, we collected over 1.36 million echocardiograms from ten standard views, along with their 3D spatial poses. In the downstream probe guidance task, we demonstrate that our pre-trained model consistently reduces guidance errors across the ten most common standard views on the test set with 0.29 million samples from 74 routine clinical scans, indicating that structure-aware pre-training benefits the scanning.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Echocardiography ; Error reduction ; Image acquisition</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Jiang, Haojun</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Sun, Zhenguo</creatorcontrib><creatorcontrib>Jia, Ning</creatorcontrib><creatorcontrib>Sun, Yu</creatorcontrib><creatorcontrib>Luo, Shaqi</creatorcontrib><creatorcontrib>Song, Shiji</creatorcontrib><creatorcontrib>Huang, Gao</creatorcontrib><title>Structure-aware World Model for Probe Guidance via Large-scale Self-supervised Pre-train</title><title>arXiv.org</title><description>The complex structure of the heart leads to significant challenges in echocardiography, especially in acquisition cardiac ultrasound images. Successful echocardiography requires a thorough understanding of the structures on the two-dimensional plane and the spatial relationships between planes in three-dimensional space. In this paper, we innovatively propose a large-scale self-supervised pre-training method to acquire a cardiac structure-aware world model. The core innovation lies in constructing a self-supervised task that requires structural inference by predicting masked structures on a 2D plane and imagining another plane based on pose transformation in 3D space. To support large-scale pre-training, we collected over 1.36 million echocardiograms from ten standard views, along with their 3D spatial poses. In the downstream probe guidance task, we demonstrate that our pre-trained model consistently reduces guidance errors across the ten most common standard views on the test set with 0.29 million samples from 74 routine clinical scans, indicating that structure-aware pre-training benefits the scanning.</description><subject>Echocardiography</subject><subject>Error reduction</subject><subject>Image acquisition</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjr0KwjAYAIMgWLTvEHAOpElr3cWfQUGooFuJzVdJCU39ktTXt4MP4HTD3XAzkggpM7bNhViQ1PuOcy42pSgKmZBHFTA2ISIw9VEI9O7QanpxGixtHdIruifQYzRa9Q3Q0Sh6VvgC5htlgVZgW-bjADgaD3rKgQVUpl-Reaush_THJVkf9rfdiQ3o3hF8qDsXsZ9ULXk5veV5JuV_1Rdod0Fy</recordid><startdate>20240719</startdate><enddate>20240719</enddate><creator>Jiang, Haojun</creator><creator>Li, Meng</creator><creator>Sun, Zhenguo</creator><creator>Jia, Ning</creator><creator>Sun, Yu</creator><creator>Luo, Shaqi</creator><creator>Song, Shiji</creator><creator>Huang, Gao</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240719</creationdate><title>Structure-aware World Model for Probe Guidance via Large-scale Self-supervised Pre-train</title><author>Jiang, Haojun ; Li, Meng ; Sun, Zhenguo ; Jia, Ning ; Sun, Yu ; Luo, Shaqi ; Song, Shiji ; Huang, Gao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30742244133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Echocardiography</topic><topic>Error reduction</topic><topic>Image acquisition</topic><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Haojun</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Sun, Zhenguo</creatorcontrib><creatorcontrib>Jia, Ning</creatorcontrib><creatorcontrib>Sun, Yu</creatorcontrib><creatorcontrib>Luo, Shaqi</creatorcontrib><creatorcontrib>Song, Shiji</creatorcontrib><creatorcontrib>Huang, Gao</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Haojun</au><au>Li, Meng</au><au>Sun, Zhenguo</au><au>Jia, Ning</au><au>Sun, Yu</au><au>Luo, Shaqi</au><au>Song, Shiji</au><au>Huang, Gao</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Structure-aware World Model for Probe Guidance via Large-scale Self-supervised Pre-train</atitle><jtitle>arXiv.org</jtitle><date>2024-07-19</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The complex structure of the heart leads to significant challenges in echocardiography, especially in acquisition cardiac ultrasound images. Successful echocardiography requires a thorough understanding of the structures on the two-dimensional plane and the spatial relationships between planes in three-dimensional space. In this paper, we innovatively propose a large-scale self-supervised pre-training method to acquire a cardiac structure-aware world model. The core innovation lies in constructing a self-supervised task that requires structural inference by predicting masked structures on a 2D plane and imagining another plane based on pose transformation in 3D space. To support large-scale pre-training, we collected over 1.36 million echocardiograms from ten standard views, along with their 3D spatial poses. In the downstream probe guidance task, we demonstrate that our pre-trained model consistently reduces guidance errors across the ten most common standard views on the test set with 0.29 million samples from 74 routine clinical scans, indicating that structure-aware pre-training benefits the scanning.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3074224413 |
source | Free E- Journals |
subjects | Echocardiography Error reduction Image acquisition |
title | Structure-aware World Model for Probe Guidance via Large-scale Self-supervised Pre-train |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T20%3A46%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Structure-aware%20World%20Model%20for%20Probe%20Guidance%20via%20Large-scale%20Self-supervised%20Pre-train&rft.jtitle=arXiv.org&rft.au=Jiang,%20Haojun&rft.date=2024-07-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3074224413%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3074224413&rft_id=info:pmid/&rfr_iscdi=true |