Structure-aware World Model for Probe Guidance via Large-scale Self-supervised Pre-train

The complex structure of the heart leads to significant challenges in echocardiography, especially in acquisition cardiac ultrasound images. Successful echocardiography requires a thorough understanding of the structures on the two-dimensional plane and the spatial relationships between planes in th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-07
Hauptverfasser: Jiang, Haojun, Li, Meng, Sun, Zhenguo, Jia, Ning, Sun, Yu, Luo, Shaqi, Song, Shiji, Huang, Gao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Jiang, Haojun
Li, Meng
Sun, Zhenguo
Jia, Ning
Sun, Yu
Luo, Shaqi
Song, Shiji
Huang, Gao
description The complex structure of the heart leads to significant challenges in echocardiography, especially in acquisition cardiac ultrasound images. Successful echocardiography requires a thorough understanding of the structures on the two-dimensional plane and the spatial relationships between planes in three-dimensional space. In this paper, we innovatively propose a large-scale self-supervised pre-training method to acquire a cardiac structure-aware world model. The core innovation lies in constructing a self-supervised task that requires structural inference by predicting masked structures on a 2D plane and imagining another plane based on pose transformation in 3D space. To support large-scale pre-training, we collected over 1.36 million echocardiograms from ten standard views, along with their 3D spatial poses. In the downstream probe guidance task, we demonstrate that our pre-trained model consistently reduces guidance errors across the ten most common standard views on the test set with 0.29 million samples from 74 routine clinical scans, indicating that structure-aware pre-training benefits the scanning.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3074224413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3074224413</sourcerecordid><originalsourceid>FETCH-proquest_journals_30742244133</originalsourceid><addsrcrecordid>eNqNjr0KwjAYAIMgWLTvEHAOpElr3cWfQUGooFuJzVdJCU39ktTXt4MP4HTD3XAzkggpM7bNhViQ1PuOcy42pSgKmZBHFTA2ISIw9VEI9O7QanpxGixtHdIruifQYzRa9Q3Q0Sh6VvgC5htlgVZgW-bjADgaD3rKgQVUpl-Reaush_THJVkf9rfdiQ3o3hF8qDsXsZ9ULXk5veV5JuV_1Rdod0Fy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3074224413</pqid></control><display><type>article</type><title>Structure-aware World Model for Probe Guidance via Large-scale Self-supervised Pre-train</title><source>Free E- Journals</source><creator>Jiang, Haojun ; Li, Meng ; Sun, Zhenguo ; Jia, Ning ; Sun, Yu ; Luo, Shaqi ; Song, Shiji ; Huang, Gao</creator><creatorcontrib>Jiang, Haojun ; Li, Meng ; Sun, Zhenguo ; Jia, Ning ; Sun, Yu ; Luo, Shaqi ; Song, Shiji ; Huang, Gao</creatorcontrib><description>The complex structure of the heart leads to significant challenges in echocardiography, especially in acquisition cardiac ultrasound images. Successful echocardiography requires a thorough understanding of the structures on the two-dimensional plane and the spatial relationships between planes in three-dimensional space. In this paper, we innovatively propose a large-scale self-supervised pre-training method to acquire a cardiac structure-aware world model. The core innovation lies in constructing a self-supervised task that requires structural inference by predicting masked structures on a 2D plane and imagining another plane based on pose transformation in 3D space. To support large-scale pre-training, we collected over 1.36 million echocardiograms from ten standard views, along with their 3D spatial poses. In the downstream probe guidance task, we demonstrate that our pre-trained model consistently reduces guidance errors across the ten most common standard views on the test set with 0.29 million samples from 74 routine clinical scans, indicating that structure-aware pre-training benefits the scanning.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Echocardiography ; Error reduction ; Image acquisition</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Jiang, Haojun</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Sun, Zhenguo</creatorcontrib><creatorcontrib>Jia, Ning</creatorcontrib><creatorcontrib>Sun, Yu</creatorcontrib><creatorcontrib>Luo, Shaqi</creatorcontrib><creatorcontrib>Song, Shiji</creatorcontrib><creatorcontrib>Huang, Gao</creatorcontrib><title>Structure-aware World Model for Probe Guidance via Large-scale Self-supervised Pre-train</title><title>arXiv.org</title><description>The complex structure of the heart leads to significant challenges in echocardiography, especially in acquisition cardiac ultrasound images. Successful echocardiography requires a thorough understanding of the structures on the two-dimensional plane and the spatial relationships between planes in three-dimensional space. In this paper, we innovatively propose a large-scale self-supervised pre-training method to acquire a cardiac structure-aware world model. The core innovation lies in constructing a self-supervised task that requires structural inference by predicting masked structures on a 2D plane and imagining another plane based on pose transformation in 3D space. To support large-scale pre-training, we collected over 1.36 million echocardiograms from ten standard views, along with their 3D spatial poses. In the downstream probe guidance task, we demonstrate that our pre-trained model consistently reduces guidance errors across the ten most common standard views on the test set with 0.29 million samples from 74 routine clinical scans, indicating that structure-aware pre-training benefits the scanning.</description><subject>Echocardiography</subject><subject>Error reduction</subject><subject>Image acquisition</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjr0KwjAYAIMgWLTvEHAOpElr3cWfQUGooFuJzVdJCU39ktTXt4MP4HTD3XAzkggpM7bNhViQ1PuOcy42pSgKmZBHFTA2ISIw9VEI9O7QanpxGixtHdIruifQYzRa9Q3Q0Sh6VvgC5htlgVZgW-bjADgaD3rKgQVUpl-Reaush_THJVkf9rfdiQ3o3hF8qDsXsZ9ULXk5veV5JuV_1Rdod0Fy</recordid><startdate>20240719</startdate><enddate>20240719</enddate><creator>Jiang, Haojun</creator><creator>Li, Meng</creator><creator>Sun, Zhenguo</creator><creator>Jia, Ning</creator><creator>Sun, Yu</creator><creator>Luo, Shaqi</creator><creator>Song, Shiji</creator><creator>Huang, Gao</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240719</creationdate><title>Structure-aware World Model for Probe Guidance via Large-scale Self-supervised Pre-train</title><author>Jiang, Haojun ; Li, Meng ; Sun, Zhenguo ; Jia, Ning ; Sun, Yu ; Luo, Shaqi ; Song, Shiji ; Huang, Gao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30742244133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Echocardiography</topic><topic>Error reduction</topic><topic>Image acquisition</topic><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Haojun</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Sun, Zhenguo</creatorcontrib><creatorcontrib>Jia, Ning</creatorcontrib><creatorcontrib>Sun, Yu</creatorcontrib><creatorcontrib>Luo, Shaqi</creatorcontrib><creatorcontrib>Song, Shiji</creatorcontrib><creatorcontrib>Huang, Gao</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Haojun</au><au>Li, Meng</au><au>Sun, Zhenguo</au><au>Jia, Ning</au><au>Sun, Yu</au><au>Luo, Shaqi</au><au>Song, Shiji</au><au>Huang, Gao</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Structure-aware World Model for Probe Guidance via Large-scale Self-supervised Pre-train</atitle><jtitle>arXiv.org</jtitle><date>2024-07-19</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The complex structure of the heart leads to significant challenges in echocardiography, especially in acquisition cardiac ultrasound images. Successful echocardiography requires a thorough understanding of the structures on the two-dimensional plane and the spatial relationships between planes in three-dimensional space. In this paper, we innovatively propose a large-scale self-supervised pre-training method to acquire a cardiac structure-aware world model. The core innovation lies in constructing a self-supervised task that requires structural inference by predicting masked structures on a 2D plane and imagining another plane based on pose transformation in 3D space. To support large-scale pre-training, we collected over 1.36 million echocardiograms from ten standard views, along with their 3D spatial poses. In the downstream probe guidance task, we demonstrate that our pre-trained model consistently reduces guidance errors across the ten most common standard views on the test set with 0.29 million samples from 74 routine clinical scans, indicating that structure-aware pre-training benefits the scanning.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_3074224413
source Free E- Journals
subjects Echocardiography
Error reduction
Image acquisition
title Structure-aware World Model for Probe Guidance via Large-scale Self-supervised Pre-train
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T20%3A46%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Structure-aware%20World%20Model%20for%20Probe%20Guidance%20via%20Large-scale%20Self-supervised%20Pre-train&rft.jtitle=arXiv.org&rft.au=Jiang,%20Haojun&rft.date=2024-07-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3074224413%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3074224413&rft_id=info:pmid/&rfr_iscdi=true